

V2-26: High-Productivity Analytics

Faculty: Chris North, Doug Bowman
(Professors of Computer Science at Virginia Tech)

**Students: Cherelle Connor, Wei Liu,
Ayush Roy, Xuxin Tang**

January 13-14, 2026

Number of requested memberships ≥ 4

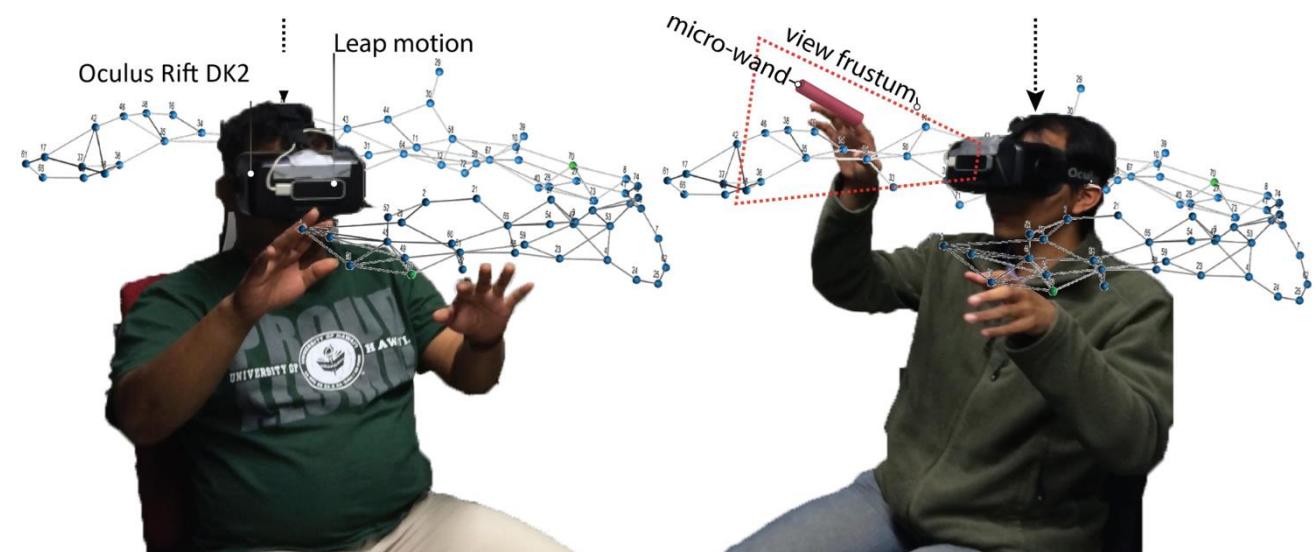
V2-26 Tasks

- **Task 1: Collaborative Immersive Analytics (Ayush Roy)**
- **Task 2: Cognitive Load in Immersive Analytics (Cherelle Connor)**
- **Task 3: Steerable Interactive Projections (Wei Liu)**
- **Task 4: Interactive Sensemaking with LLMs (Xuxin Tang)**

National Science Foundation's

Industry/University Cooperative Research (I/UCRC) Program

Task 1 : Collaborative Immersive Analytics


Ayush Roy

January 13-14, 2026

Study Plan

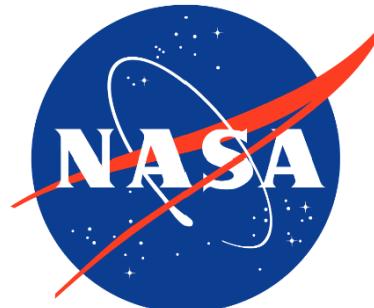
- How well does Space to Think enable asynchronous collaborative hand-off of sensemaking progress?
- What spatial strategies and encodings are most/least helpful?
- Workflow:
 - Analyst A: Initial sensemaking
 - Hand-off → Analyst B
 - Analyst B: Continues sensemaking
 - Hand-off → Analyst A
 - Analyst A: Final synthesis

National Science Foundation's

Industry/University Cooperative Research (I/UCRC) Program

Task 2 : Characterizing Cognitive Load in Immersive Spaces to Think

Cherelle Connor


January 13-14, 2026

Understanding Cognitive Load in IST

- Poorly managed CL
 - Reduced attention
 - Slow information processing and reduced task performance
- Well managed CL
 - Improve task efficiency and task performance
 - **Important first step needed for identify mitigation strategies including:**
 - Summation
 - Minimizing distractions
 - Recovery intervals

Cognitive Load

- NASA TLX
 - Six subfactors:
 - Mental, Temporal, Physical, Performance, Frustration, Effort
 - Self-report administered post-task completion
 - Susceptible to recall bias
 - No continuous information provided
- Physiology data
 - Can provide objective, continuous measurements
 - Heart rate variability (HRV)
 - HRV ↓, CL ↑
 - Galvanic skin response (GSR)
 - GSR ↑, CL ↑
 - Eye-tracking
 - Blinks, fixation, pupil dilation
 - These measures have been shown to reliably indicate the CL associated with a task

<https://www.nasa.gov/history/symbols-of-nasa/>

National Science Foundation's

Industry/University Cooperative Research (I/UCRC) Program

Task 3 : Semantic Steering of Document Projections

Wei Liu

January 13-14, 2026

Research Plan

Problem

Document projections are passive

- Embeddings + projections are widely used
- Analysts often see **semantic misalignment**
- Fixing it requires:
 - retraining / fine-tuning
 - model-specific changes (expensive)

Users can see problems, but cannot fix them.

Research Question

How can users steer and reshape document projections interactively, without retraining models?

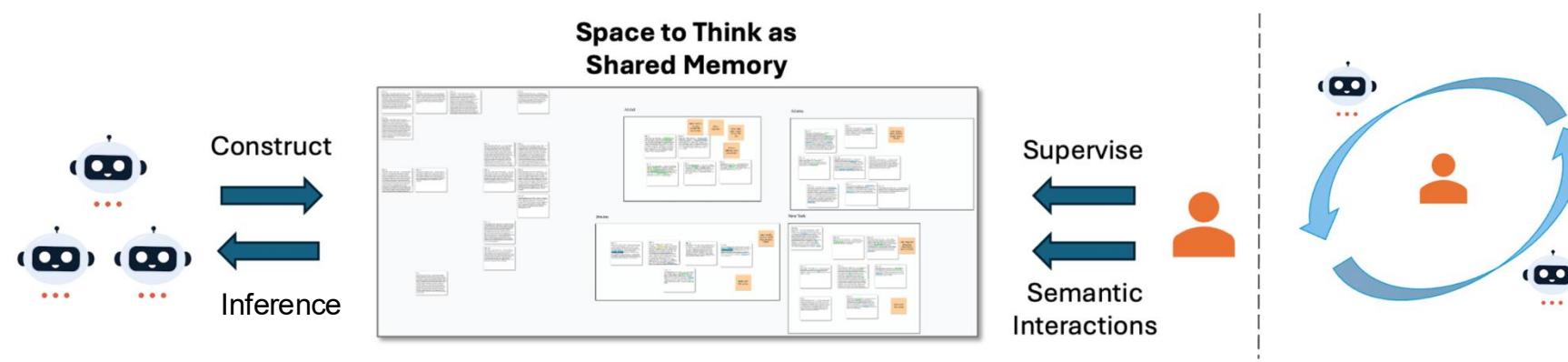
- LLMs as a semantic interpretation layer

National Science Foundation's

Industry/University Cooperative Research (I/UCRC) Program

Task 4 : Interactive LLM for High-Performance Sensemaking

Xuxin Tang



January 13-14, 2026

Research Plan

▪ Shifting toward Bi-Directional Human-AI Sensemaking

- While our current work focuses on **Human-to-AI** augmentation via spatial layouts, the inverse—**AI-to-Human** augmentation—remains largely unexplored. To bridge this gap, we propose the following research questions:
- **RQ1 (Transparency):** How does the workspace of the AI’s intermediate cognitive steps benefit user understanding?
- **RQ2 (Agency):** What mechanisms allow users to effectively supervise and intervene in AI-led sensemaking processes?
- **RQ3 (Alignment):** How can iterative workflows support human-AI collaboration toward user-defined goals and intentions?
- **RQ4 (Outcomes):** How does a collaborative sensemaking approach improve the quality and depth of the final analytical results?

