

V1-26: Performance, Power, and Precision, of Heterogeneous Systems

January 13-14, 2026

Faculty: Wu Feng and Krish Sundararajah
Students and Post-Students:

Nabayan Chaudhury, Atharva Gondhalekar, Poorna Gunathilaka, Pratheek Prakash Shetty, Ritvik Prabhu, Eric Rippey, Paul Sathre

Number of requested memberships ≥ 6

Goal: Productivity → Performance, Power, Precision

- Tuning & optimization of performance, power, and precision (manual → automatic) for productivity in **heterogeneous** computing systems: CPU + {CPU, GPU, TPU, ...}
- Akin to DARPA HPCS program for homogeneous systems (e.g., Chapel, Fortress, X10) but for heterogeneous systems (e.g., Chapel, oneAPI → SYCL, OpenSHMEM)
- Preferred Vehicle: Modern, Open Standard Languages & Runtimes → **write once, run anywhere**
- Metrics of Evaluation: Performance, Power / Energy Efficiency, and Precision (e.g., int vs. SP vs. DP)



Motivation & Background

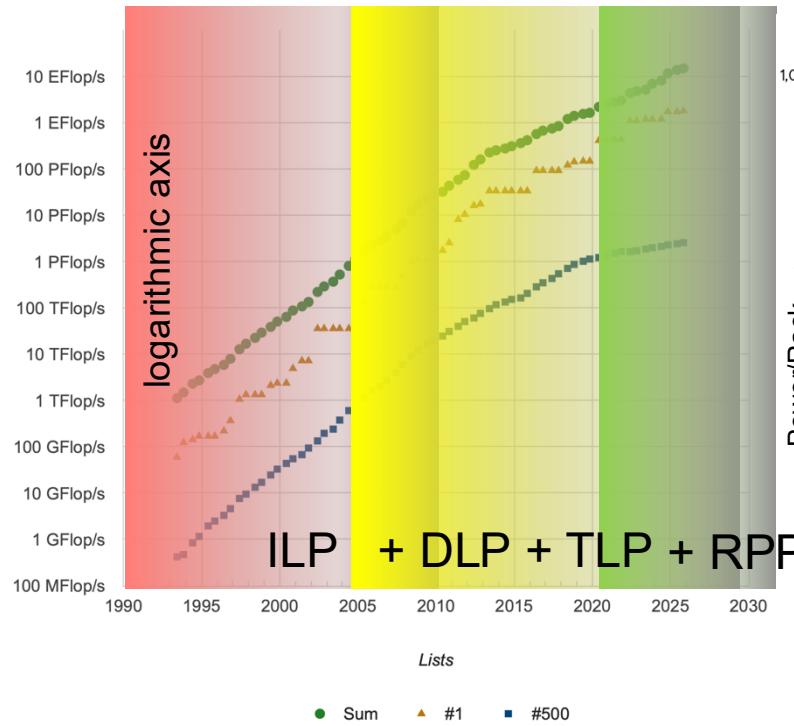
Past CHREC and SHREC memberships on heterogeneous systems

Tools & Environments

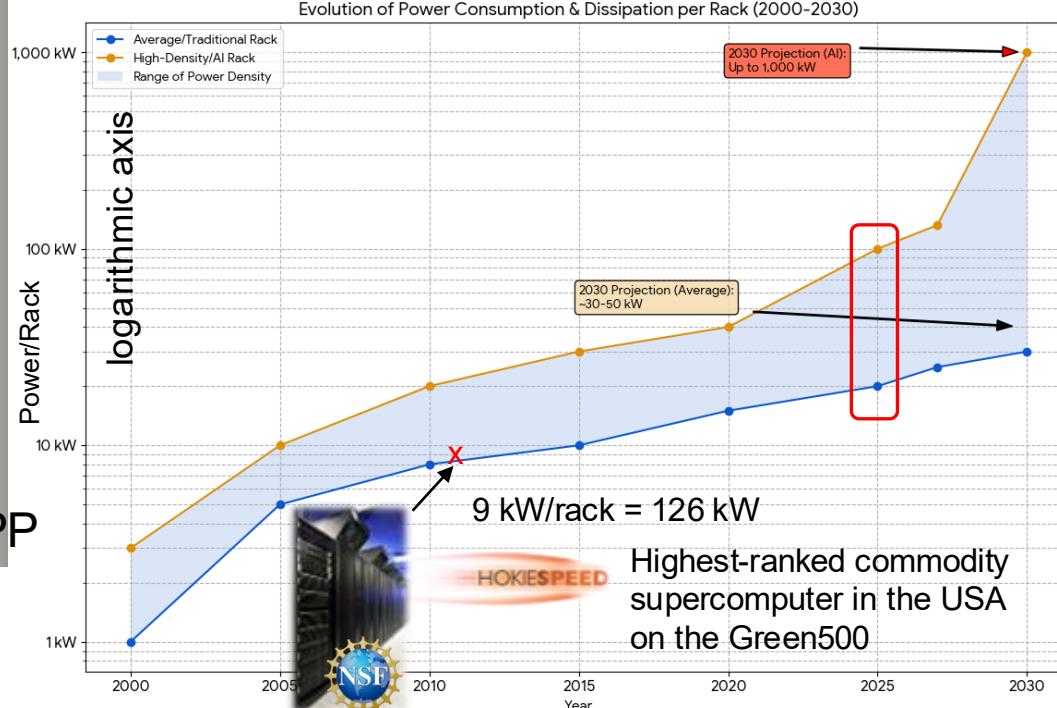
Programming Ecosystems

Benchmarks

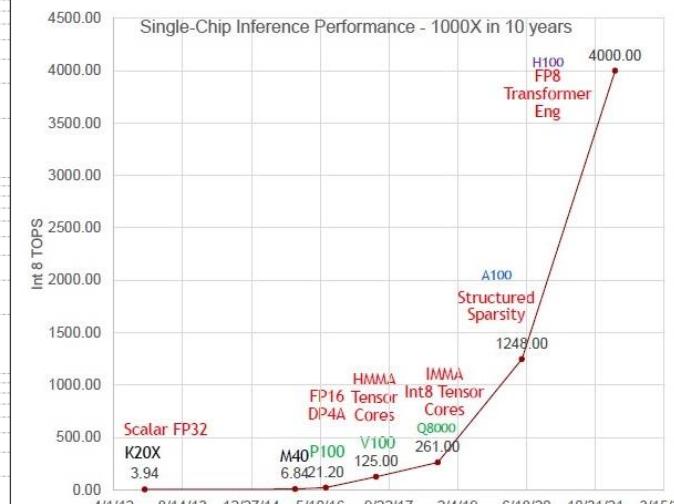
Performance (still matters but ...)



Power (becoming an issue ...)



Precision (can address both)



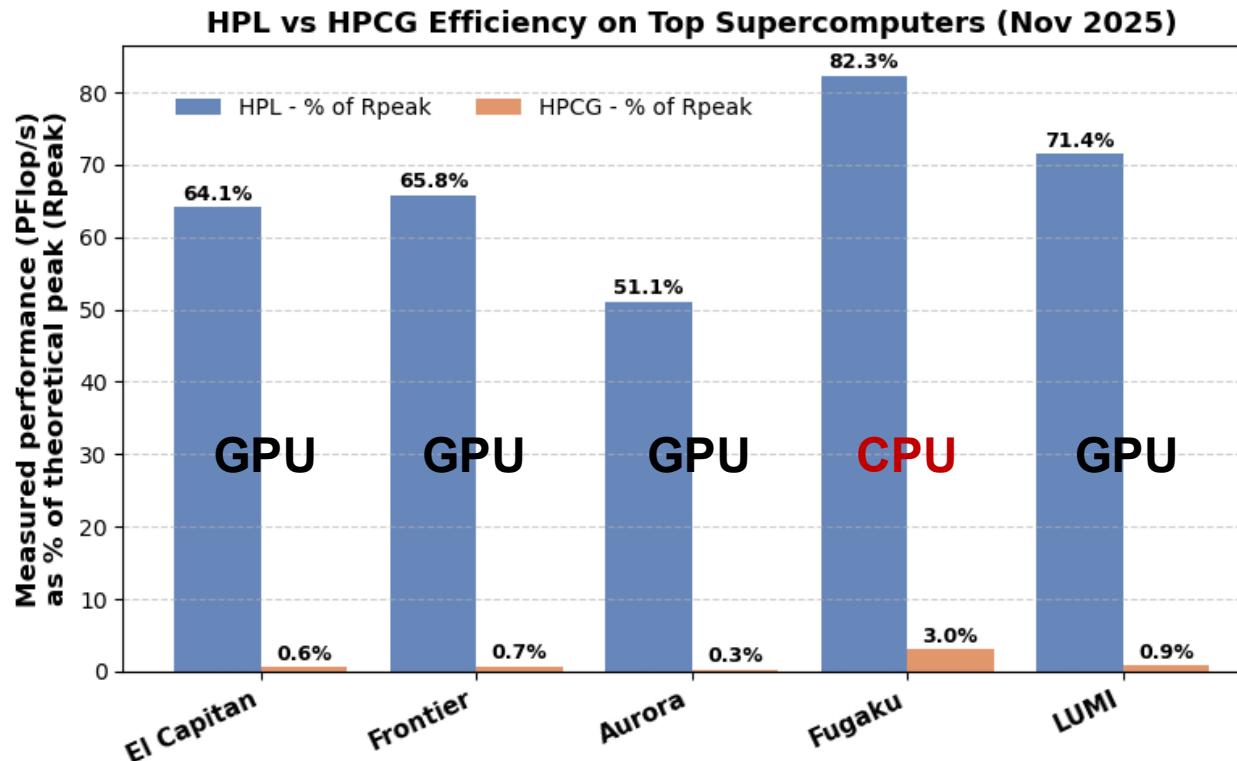
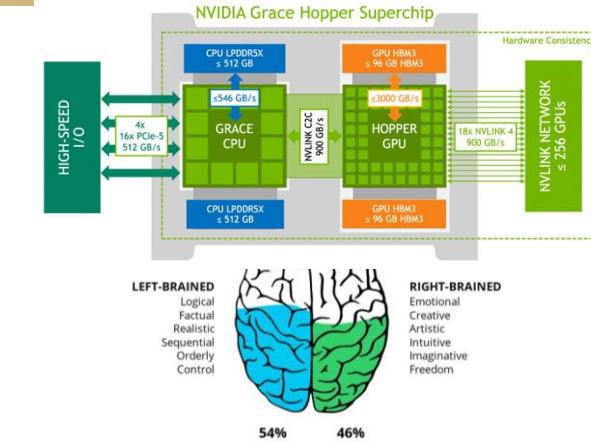
RPP: reduced-precision parallelism logarithmic axis

ILP: instruction-level parallelism
DLP: data-level parallelism
TLP: thread-level parallelism

Background: Performance & Power

- Ranking of fastest supercomputers (Nov. 2025) based on

- High-performance LINPACK (HPL) → **REGULAR** workloads
- High-performance conjugate gradient (HPCG) → **IRREGULAR** workloads
- GPU: 60%-85% of peak for **regular** workloads; 0%-5% for **irregular** workloads

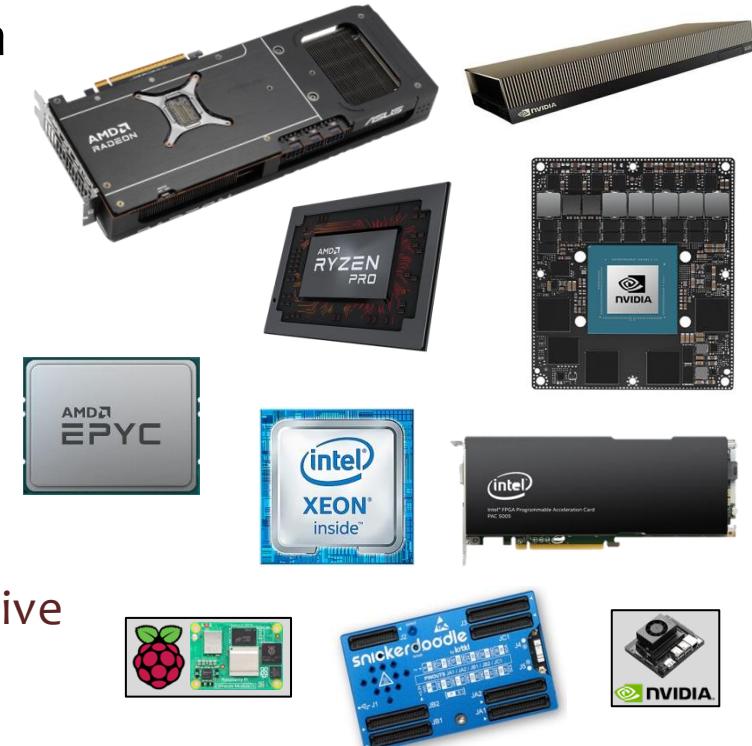


Supercomputer	TOP500 Rank	HPCG Rank	Accelerator	Peak Performance R_{peak} (PFlop/s)	Power (MW)
El Capitan (LLNL, USA)	1	1	AMD Instinct MI300A GPUs	2821.1	29.7
Frontier (ORNL, USA)	2	3	AMD Instinct MI250X GPUs	2055.0	24.6
Aurora (ANL, USA)	3	4	Intel Data Center Max GPUs	1980.0	38.7
Fugaku (RIKEN, Japan)	7	2	Fujitsu A64FX CPUs (no GPUs)	537.2	29.9
LUMI (CSC, Finland)	9	5	AMD Instinct MI250X GPUs	531.5	7.1

- Optimizations for performance and power
 - ✓ Mixed-precision, tuning voltage/frequency
- Simultaneous co-scheduling for heterogeneity
 - ✓ CPU + GPU co-scheduling, as appropriate

Approach

- Tune and optimize the **performance** of a heterogeneous system
- Characterize the **power** and **energy** of a heterogeneous system
 - GPU device power via vendor tools (e.g., nvidia-smi)
 - Total system power via power meters and software tools (e.g., RAPL)
- Characterize the **performance-vs-power** tradeoff
 - Performance per watt or energy-delay product
 - Power vs. runtime → energy
- Evolve the diversity of **app benchmarks** to evaluate the above
 - Regular vs irregular. Double vs. single precision. CPU- vs memory-intensive
- **Identify the best platform(s)** and associated ecosystem(s) for performance, power, and/or precision (across many apps)
- **Enable further performance, power, and precision-aware research:** automated co-scheduling at run-/compile-time, performance vs. power vs. precision tradeoff



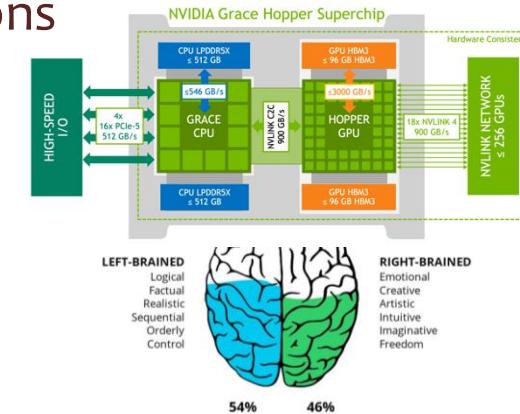
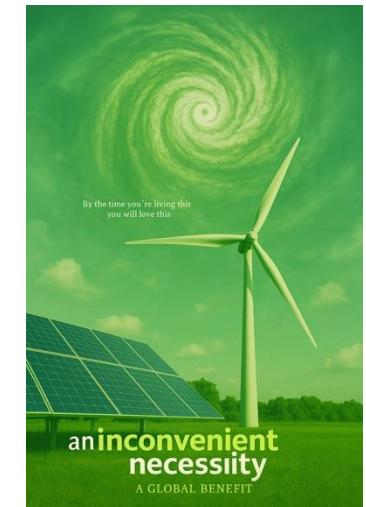
Open Source

Closed Source

Proposed Tasks for V1-26

Memberships:
(Mandatory + Optional), e.g., (2+1)

- Task 1: Performance, Power/Energy, & Precision for **Parallel** Hetero Computing (2+5)
 - Task 1a: Energy-Efficient/Energy-Dominant Computing for Irregular Applications
 - Task 1b: @Runtime: Simultaneous Co-scheduling on Heterogeneous Devices
 - Task 1c: @Compiler: Simultaneous Co-scheduling on Heterogeneous Devices
 - Task 1d: Portable Runtimes for Heterogeneous Task Graphs
 - Task 1e: Concurrent Data Structures for the GPU
- Task 2: High-Performance **Distributed** Computing with GPUs (2+2)
 - Heterogeneous PGAS vs MPI+X for Large-Scale Compute
- Task 3: Performance & Power/Energy for **Edge** Computing (1+2)
 - Task 3a: Analysis of Portable Kernel Pipelines for Edge Devices
 - Task 3b: Modeling of Power/Energy Draw via Generative AI

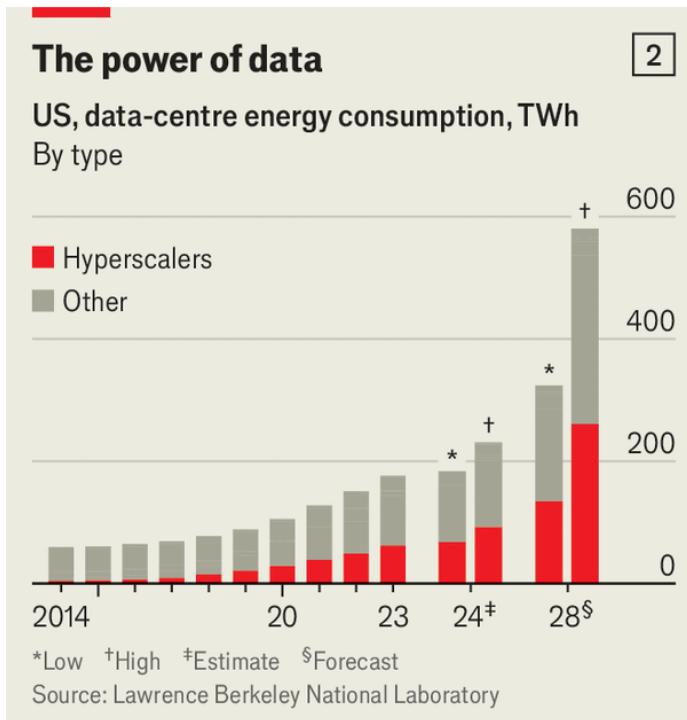
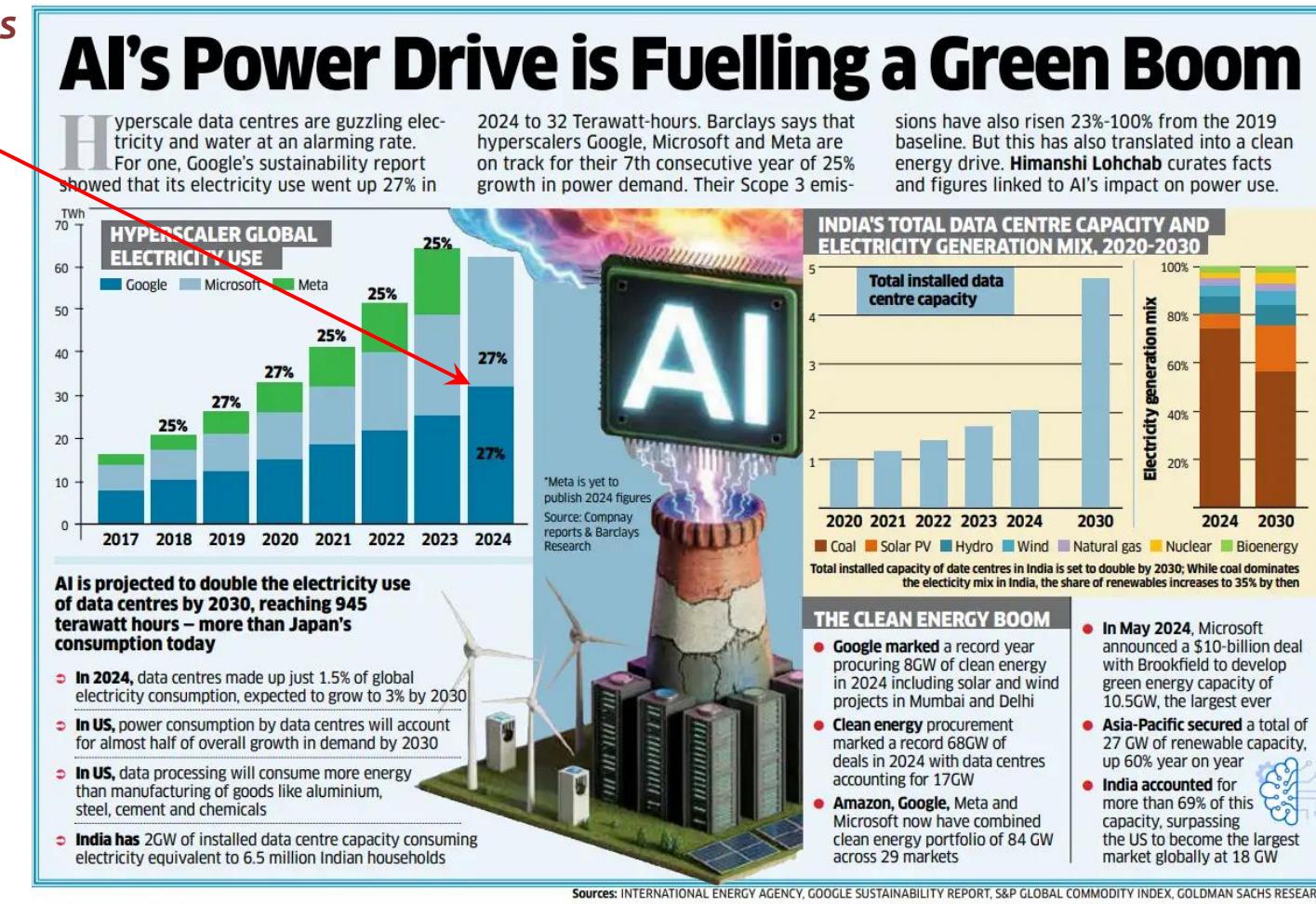


Courtesy: ChatGPT

Task 1a: Energy-Efficient/Energy-Dominant Computing

Motivation

- Power & energy are now *first-order constraints*
 - Hyperscale data center guzzles 20 MW – 50 MW on avg. (with energy consumption ~ 32 TWh)
 - Modern supercomputer uses 10 MW – 40 MW



Task 1a: Energy-Efficient/Energy-Dominant Computing

Motivation

- Power & energy are now **first-order constraints**
 - Hyperscale data center guzzles 20 MW – 50 MW on avg. (with energy consumption ~ 32 TWh)
 - Modern supercomputer uses ~ 10 MW – 40 MW
- Power- and energy-aware approaches needed to align application behaviour with system-level power budgets**

Approach: Target Apps, Platforms, and Optimizations

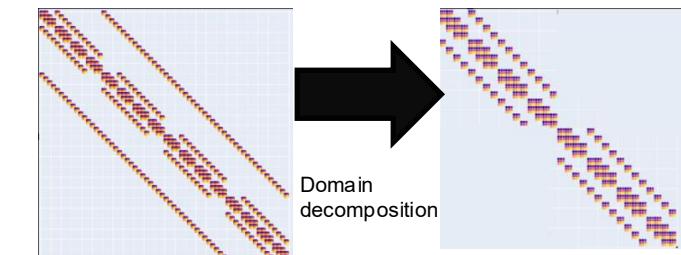
- Apps: Jaccard similarity (JS), conjugate gradient (CG), triangle counting (TC), [**your workload here**] (see appendix)
- Platforms: CPU/GPU/APU from AMD, Intel, or NVIDIA
- App-level optimizations
 - (1) mixed- or reduced-precision computing and (2) fine-grained domain decomposition

Milestones

- Application suite for tuning & optimization (i.e., power and energy efficiency)
- Software-based scripting framework for power and energy measurement
- Profiling database of power and energy data via hardware & software meters
 - Power → vendor tools (e.g., nvidia-smi, rocm-smi)
 - Energy → integration of power over runtime

Supercomputer	TOP500 Rank	HPCG Rank	Accelerator	Peak Performance R_{peak} (PFlop/s)	Power (MW)
El Capitan (LLNL, USA)	1	1	AMD Instinct MI300A GPUs	2821.1	29.7
Frontier (ORNL, USA)	2	3	AMD Instinct MI250X GPUs	2055.0	24.6
Aurora (ANL, USA)	3	4	Intel Data Center Max GPUs	1980.0	38.7
Fugaku (RIKEN, Japan)	7	2	Fujitsu A64FX CPUs (no GPUs)	537.2	29.9
LUMI (CSC, Finland)	9	5	AMD Instinct MI250X GPUs	531.5	7.1

$$\frac{1}{h^2} \begin{pmatrix} -2 & 1 & 0 & 0 & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 1 & -2 & 1 \\ 0 & \dots & \dots & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{N-3} \\ u_{N-2} \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_{N-3} \\ f_{N-2} \end{pmatrix}$$

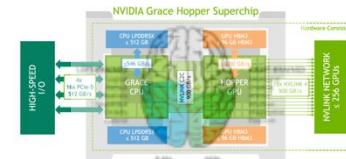
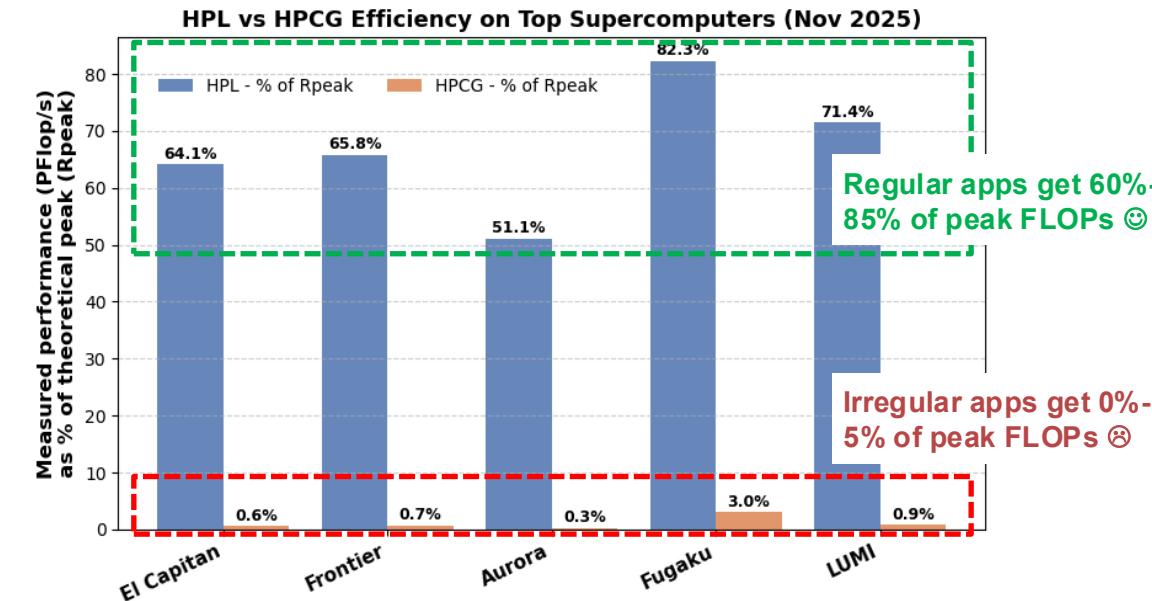


Validation of software meters
w.r.t. hardware meters?

Task 1b: @Runtime Simultaneous Co-scheduling for Heterogeneity

Motivation

- Supercomputing nodes lean towards GPUs (3:1 GPU-to-CPU) → **presumption: more GPUs will benefit every application**
 - Alas, **NOT** the case for **irregular applications** → non-coalesced memory accesses, branch divergence, heavy data movement
- Physiologically, we use two brains simultaneously – left and right
What about “in silico”?
CPU **and** GPU simultaneously?



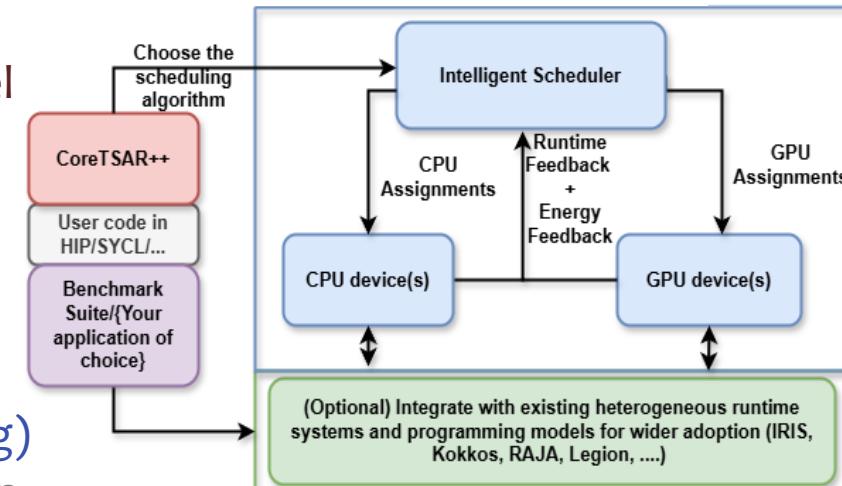
Approach

- Efficacy of (manual) simultaneous co-scheduling of apps
 - ✓ Broader evaluation across a larger collection of benchmarks (see appendix)
- Build an automated scheduler that fits an accelerator programming model (e.g., OpenMP or [backend of interest] on any xPU) w/ minimal hassle
- Enable automated scheduling for runtime performance & energy cost

Milestones

o. Manual “oracle” co-scheduling of resources

1. CoreTSAR++ automated scheduler with accelerator programming model (e.g., OpenMP on any CPU+GPU; optionally, AMD HIP, oneAPI/SYCL Intel)
2. Power measurement methodology (prelude to energy-efficient scheduling)
3. EnergyTSAR++ → New scheduler to minimize runtime energy consumption



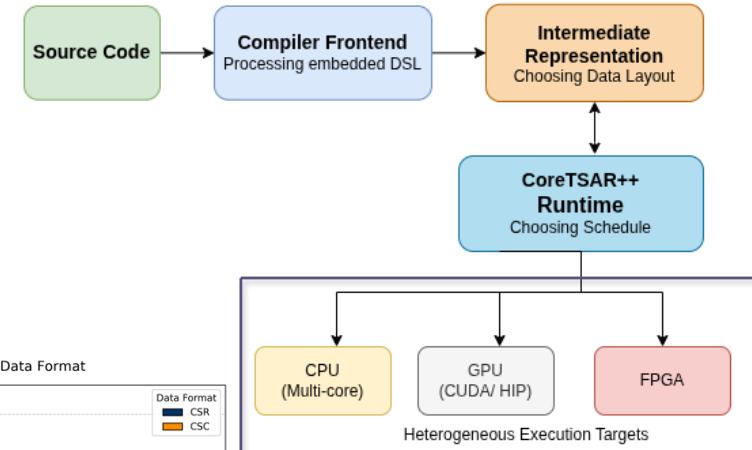
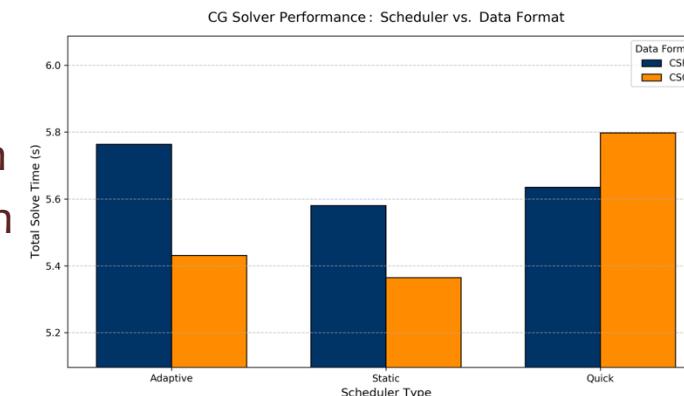
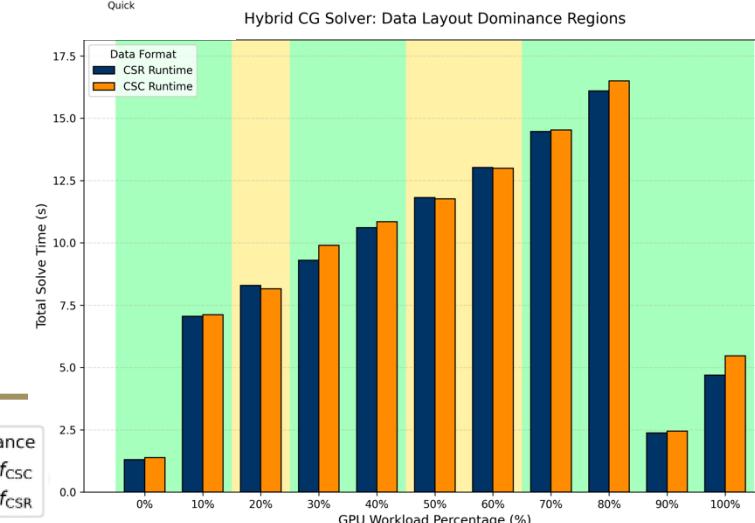
Task 1c: @Compile Simultaneous Co-scheduling for Heterogeneity

Data-Layout Optimizations for Irregular Apps

- Motivation
 - Data layout often influences simultaneous co-scheduling of an app
 - Changing data layout → a schedule favoring different execution targets
 - Challenge: Realizing different schedules by changing data layout

- Approach
 - Template-based embedded DSL (in C++) to abstract data layout from description of computation
 - Compiler plugin to manipulate data layout of program (e.g., MLIR dialect) and generate code accordingly
 - Compiler support to guide co-scheduling of CoreTSAR++ runtime

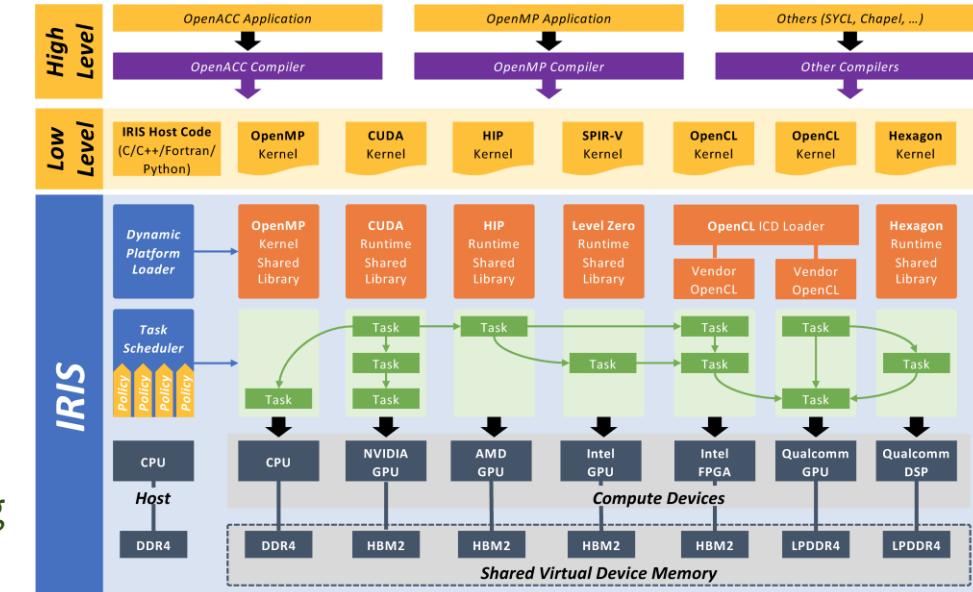
- Milestones
 - Bidirectional compiler support for CoreTSAR++ runtime to provide data layout-aware scheduling for hetero execution targets.
 - Implementation & evaluation of irregular applications from HeCBench in this compilation pipeline.



Task 1d: Portable Runtimes for Heterogeneous Task Graphs

Motivation

- Modern HPC requires device- and system-aware mapping of kernels, communication, and I/O to hardware
- Hardware migration (translate, remap, retune) is a significant cost [time, human, \$\$] which slows mission progress
- Portable languages help reduces translation component
- Remapping and re-tuning for new hardware still takes effort!
 - Intelligent heterogeneous tasking systems can help!
 - Given a portable representation, model and predict tradeoffs in mapping kernels to different hardware in the system



Approach

- Implement SHREC-related applications using either in OpenMP / OpenARC, or emerging UniSYCL compiler
- Leverage and evaluate the *IRIS* portable heterogeneous tasking system's ability to achieve high performance

Milestones

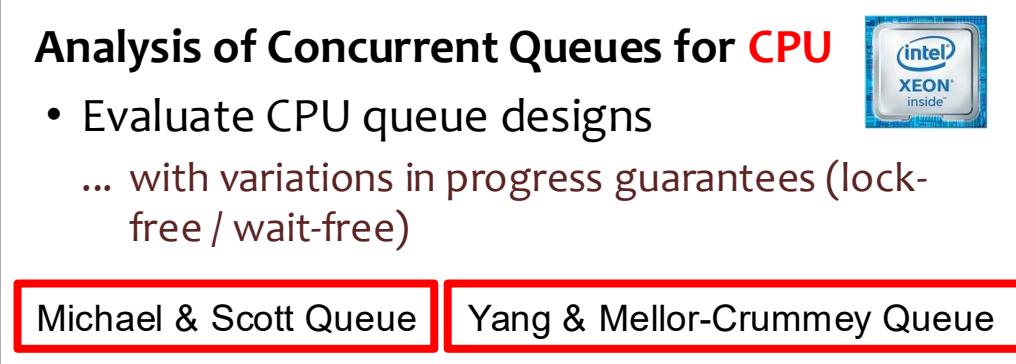
1. Identify and migrate/implement a SHREC workload in the IRIS runtime, analyze perf./prod. (II) (0.5)
2. Evaluate perf./prod. (II) on traditional heterogeneous HPC (CPU+GPU, **homogeneous across nodes**) (1)
3. Evaluate perf./prod. (II) on multiply-heterogenous HPC (CPU+X, **where X differs between nodes**) (1)
4. Evaluate perf./prod. (II) w/ edge+centralized hybrid workloads w/ heterogeneous platforms (2)
(i.e. data collection/reduction at the low-power edge, tightly coupled to high-power centralized analysis)

Task 1e: Concurrent Data Structures for the GPU

Motivation

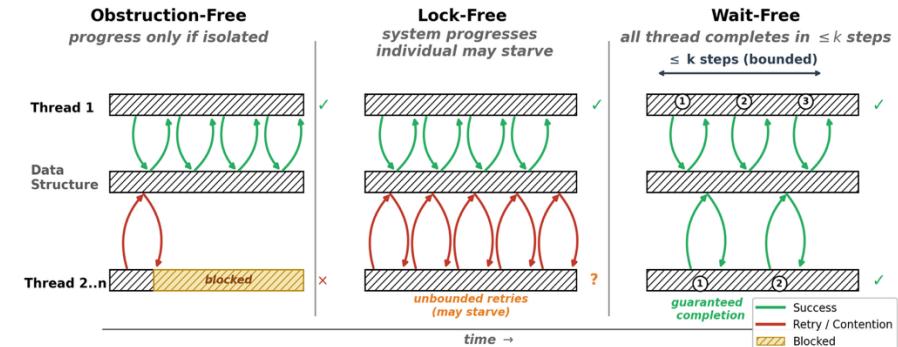
- CPU concurrent data structures? MATURE (e.g., see Michael & Scott)
- GPU concurrent data structures? NASCENT to NON-EXISTENT
- GPU concurrency bottlenecks NOT addressed by current abstractions

Approach



Milestones

1. Adaptation of CPU concurrent queues for GPU
 - Wait-Free-Queue (WFQ), Fetch-and-add based Queue (F&AQ)
2. Synthesis of GPU concurrent queues, e.g., bounded memory, cache-aware
3. Evaluation via microbenchmarks (BFS) and application (ray tracing)



Synthesis of Concurrent Queues for GPU

- Refactor for GPU / CPU+GPU architecture
 - ✓ Discrete: AMD MI200, NVIDIA A100/H200
 - ✓ Fused: AMD MI300A, NVIDIA GH200

Refactored M&S Queue
Refactored Y&M Queue

Breadth-First Search

Ray-Tracing

 Mission-Critical Computing
NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC)

Tasks: Baseline & Optional
($0 + 1$)

12

 University of Pittsburgh
 BRIGHAM YOUNG
UNIVERSITY
 VIRGINIA TECH
 UF
UNIVERSITY OF FLORIDA

Task 2: Heterogeneous PGAS vs MPI+X for Large-Scale Compute

Motivation

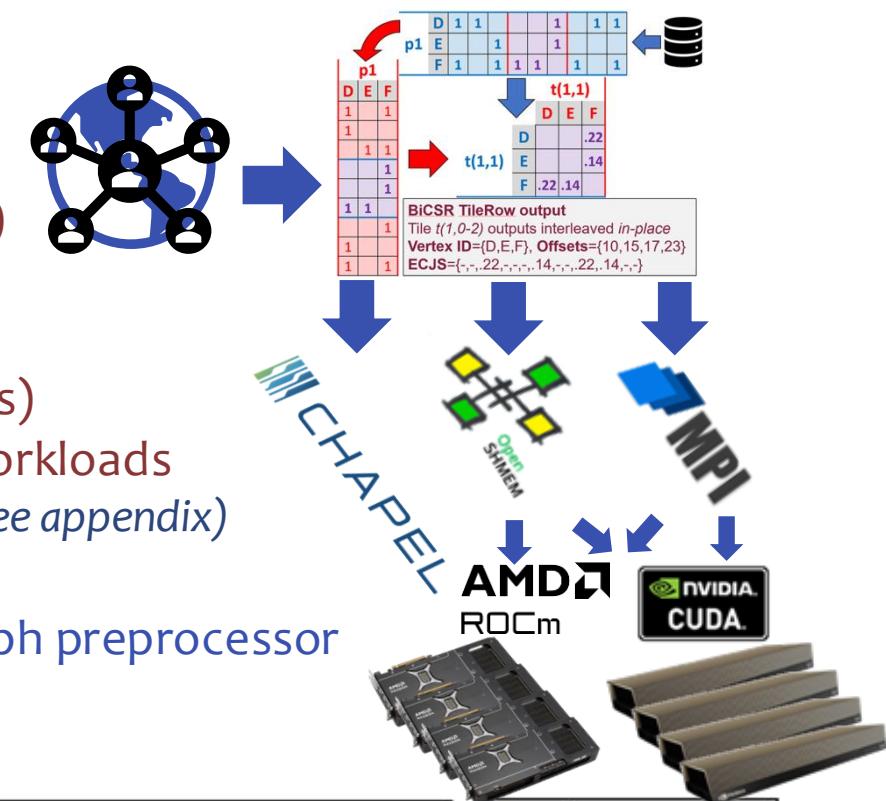
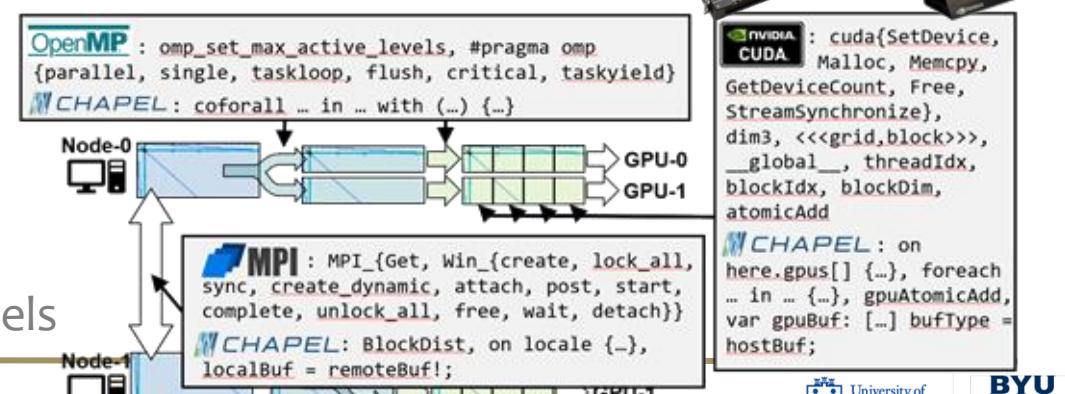
- Proliferation of programming models for distributed GPUs
 - MPI+CUDA/HIP, Chapel (PGAS), SHMEM (Open-, NV-/ROCm-)
- Scale-out evaluation needs new inputs too large for 1 GPU ($> 100\text{GB}$)
 - Small ($\sim 1\text{B}$ -edge) graphs starve the GPUs of work when partitioned

Approach

- Implement new preprocessor for web-scale graphs ($\sim 10\text{B}-100\text{B}$ edges)
- Refine and rigorously compare & contrast distributed GPU graph workloads
 - Jaccard similarity (MPI+X, Chapel, OpenSHMEM), ... [your app here] (see appendix)

Milestones

1. LWA (web-scale) \rightarrow bidirectional compressed sparse row (CSR) graph preprocessor
2. Comparative language analysis
 - Intra- and inter-node performance, productivity, power
 - HIP for AMD GPU (MPI+X and OpenSHMEM)
 - CPU- vs. GPU-driven communication models
3. Integration of intra-node hybrid JS approaches
 - Coarse/fine, CPU/GPU, 2d kernels, co-scheduled
4. Additional graph workloads: triangle count, k-truss, etc.
5. Explore reduced-width quantization of intersection kernels



Task 2: Heterogeneous PGAS vs MPI+X vs SHMEM

- Capturing high-level language tradeoffs for parallel & distributed computing (work in progress)

Feature	Chapel	SHMEM		MPI+X
		Open-	NV-	
GPU-driven communication	NO	NO	YES	Depends on implementation
Consistent GPU/node API	YES	NO	Depends	NO
Vendor-neutral API	YES	YES	NO	Depends on kernel language
Independently-sized per-node GETable allocations	YES	NO	NO	Dynamic-only
Exposed thread blocking	NO	YES	?	YES
Node-specific partial data	YES	If same size	If same size	YES

“Can I transfer GPU pointers without manually staging on the CPU?”

“Do I copy between nodes and between the CPU and GPU with the same API?”

“Can my code run on another vendor’s hardware without rewrites?”

“Can I allocate different sizes of communicable data on different ranks?”

“Can I force a user-facing thread to spin in the foreground?”

“Can I allocate *non-overlapping* subsets of data across ranks, and still communicate them?”

Task 3a: Analysis of Portable Kernel Pipelines for Edge Devices

Motivation

- Proliferation of edge devices creates a data bottleneck with centralized processing
- Moving pre-filtering and other compute to the edge reduces aggregate bandwidth and storage
 - Issue: Wide range of edge devices that require **different** programming approaches
 - Challenge: Is there a robust path from portable HPC languages to low-power edge devices?

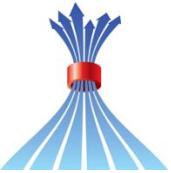
Approach

- Leverage portable, open HPC standards, and open-source toolchains to compute on edge GPU(s)
 - Examples: OpenCL, SYCL, SPIR, Vulkan
- Metrics: performance, power, productivity, and performance/power
- Platforms: Raspberry Pi Compute Module (CM) 5 and Nvidia Jetson Orin Nano Super
- Workloads: **Estimation of signal parameters via rotational invariant techniques (ESPRIT), FFT convolution, [your workload here], multiple signal classification (MUSIC)**

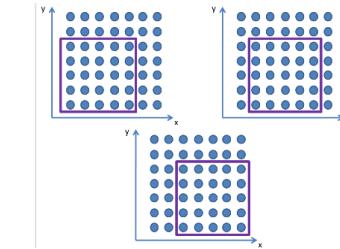
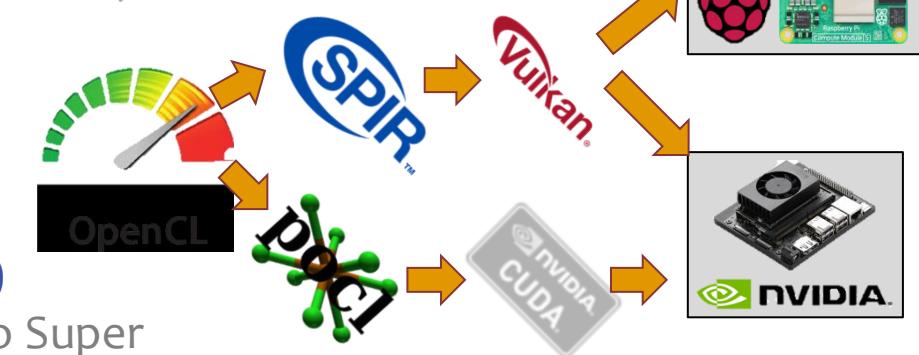
Milestones

1. Raspberry Pi CM5 via OpenCL C → →
 - FFT convolution, ESPRIT → Perf./Power (II) analysis
2. Nvidia Jetson Orin Nano via OpenCL C → →
3. MUSIC algorithm on Raspberry Pi CM5 and Nvidia Jetson Orin Nano Super

Datacenter Servers



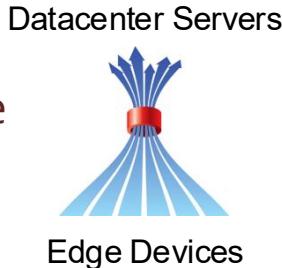
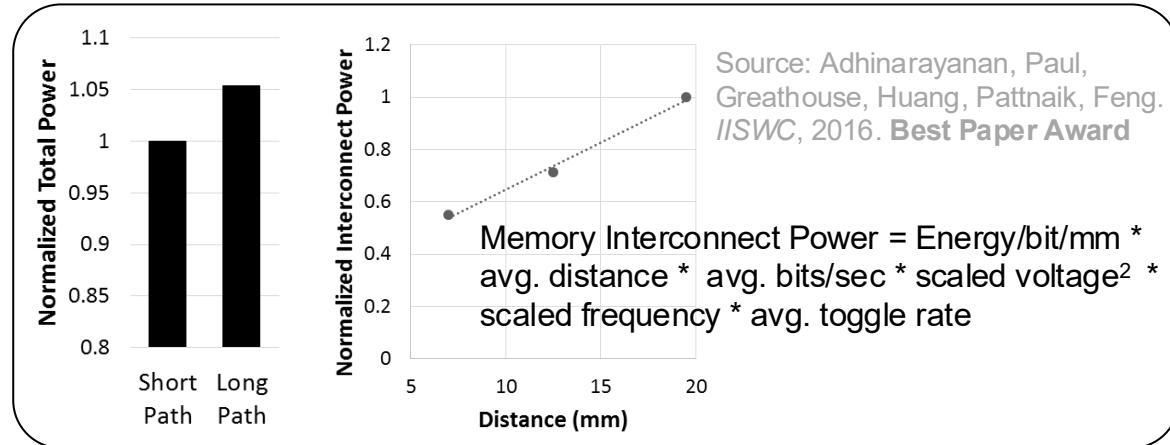
Edge Devices



Task 3b: Modeling of Power/Energy Draw via Generative AI

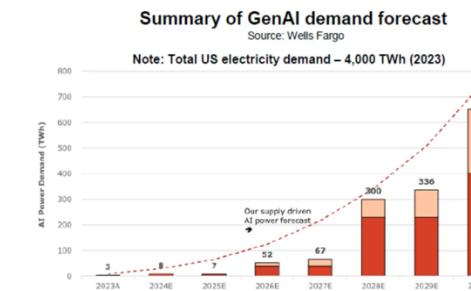
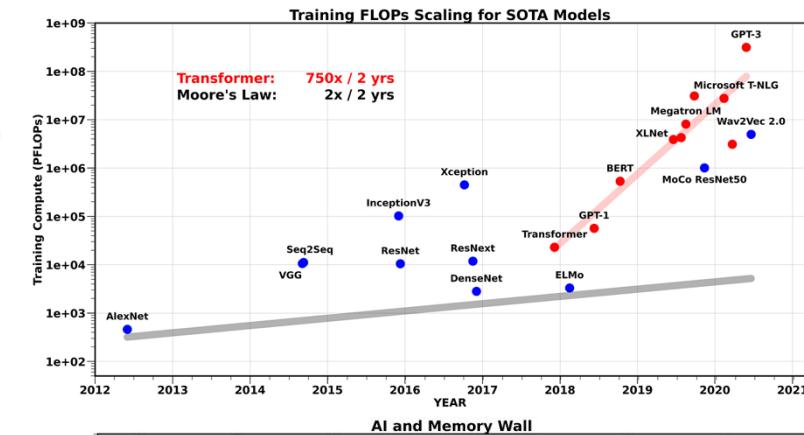
Motivation

- Environment: Tactical computing on the edge (i.e., move from datacenter to the edge)
- Challenge: Edge devices energy-constrained
 - How to deploy generative AI models that are constrained by the “AI Memory Wall,” where energy consumption is dominated by data movement
- State of the Art
 - Reliance on oversimplified linear models that do NOT capture complex, non-linear dynamics of today’s GPU



Approach

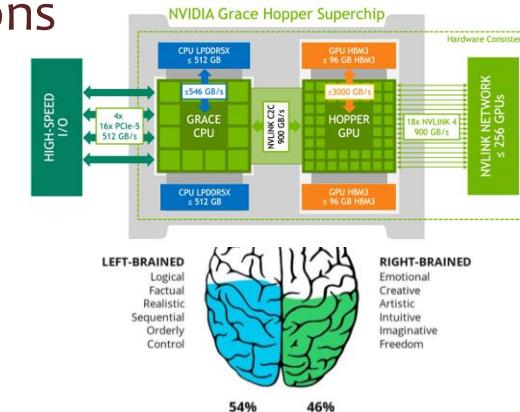
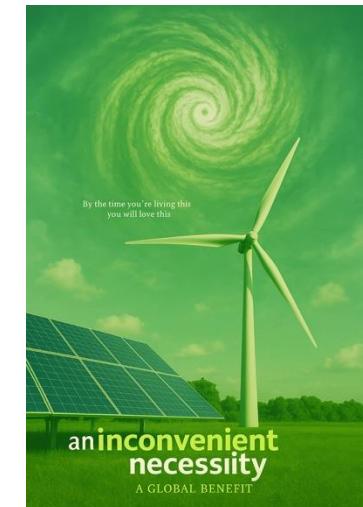
- Memory-centric energy-modeling framework that integrates actual measurements and intelligent optimization to enable accurate prediction and systematic minimization of energy use in transformer-based models
 - Memory access can be **100-200 times more energy-intensive** than computation
 - Re-orientation of the energy optimization problem around data movement, creating new pathways to deploy powerful foundational models on edge & tactical hardware



Proposed Tasks for V1-26

Memberships:
(Mandatory + Optional), e.g., (2+1)

- Task 1: Performance, Power/Energy, & Precision for **Parallel** Hetero Computing (2+5)
 - Task 1a: Energy-Efficient/Energy-Dominant Computing for Irregular Applications
 - Task 1b: @Runtime: Simultaneous Co-scheduling on Heterogeneous Devices
 - Task 1c: @Compiler: Simultaneous Co-scheduling on Heterogeneous Devices
 - Task 1d: Portable Runtimes for Heterogeneous Task Graphs
 - Task 1e: Concurrent Data Structures for the GPU
- Task 2: High-Performance **Distributed** Computing with GPUs (2+2)
 - Heterogeneous PGAS vs MPI+X for Large-Scale Compute
- Task 3: Performance & Power/Energy for **Edge** Computing (1+2)
 - Task 3a: Analysis of Portable Kernel Pipelines for Edge Devices
 - Task 3b: Modeling of Power/Energy Draw via Generative AI



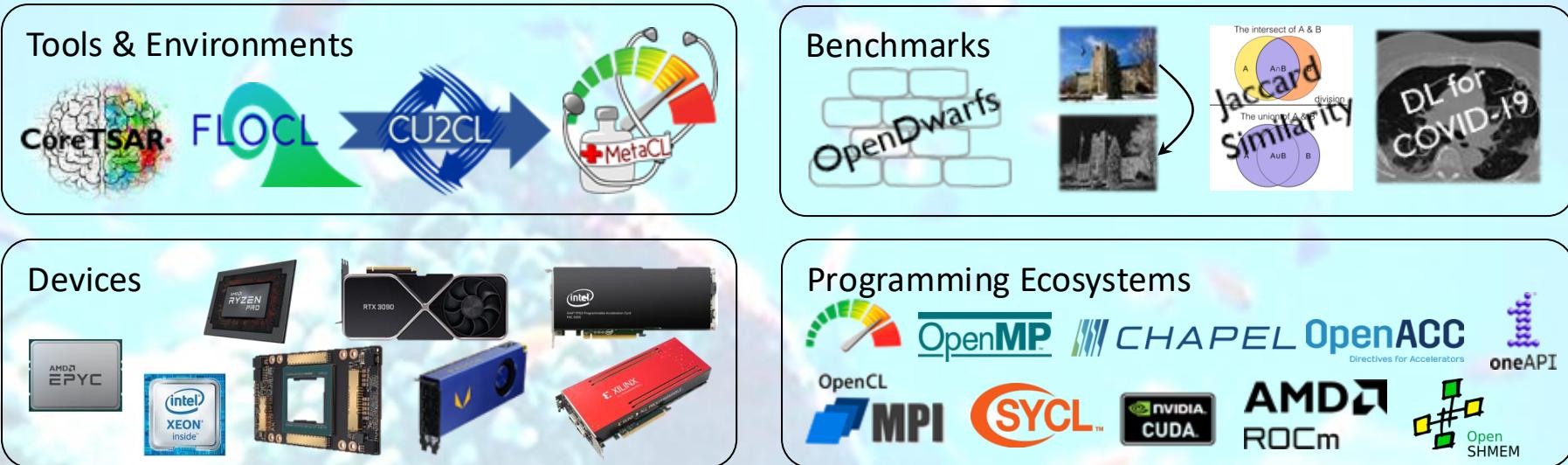
Courtesy: ChatGPT

Appendix

Background & Motivation

- Extend our R&D to create and analyze an ecosystem of tools, environments, and benchmarks for heterogeneous computing

Past CHREC-
and
SHREC-funded
R&D



Challenges: How to *productively* ...

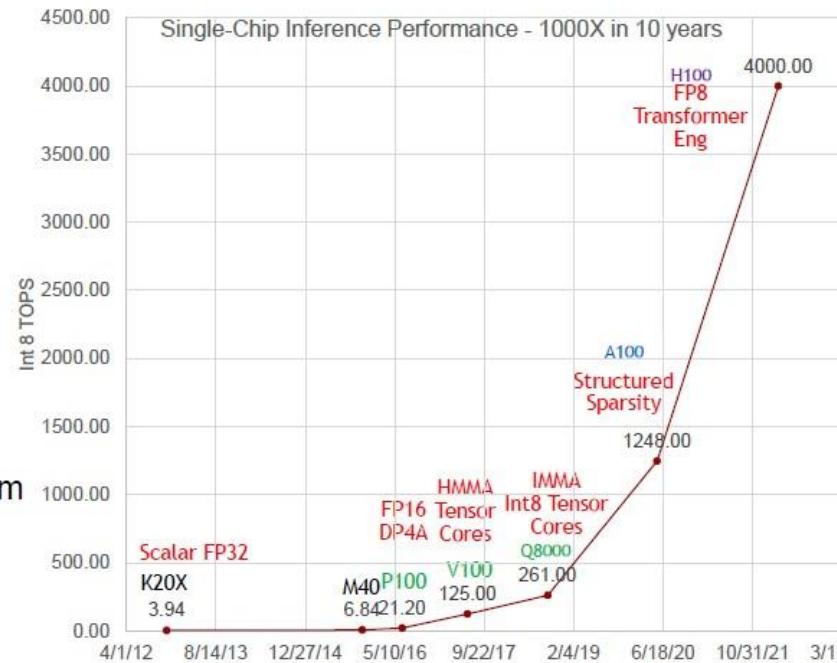
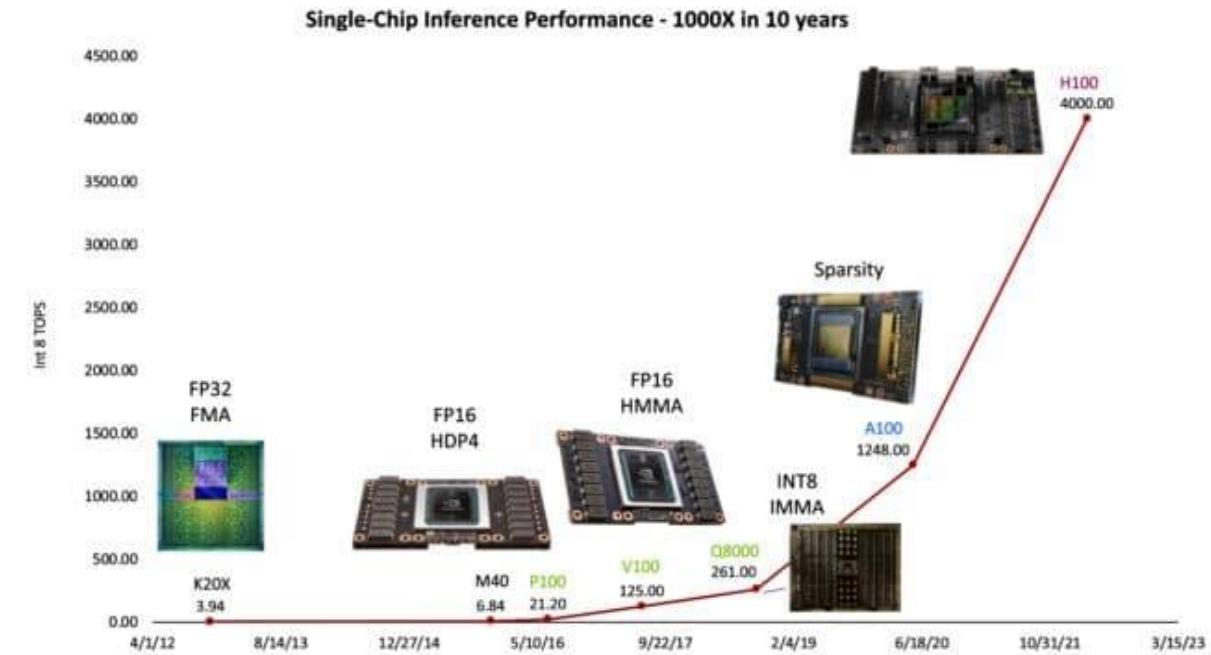
- Program an application so it runs on many platforms?
- Evaluate a processor architecture & compare it to others?
- Develop back-end optimizations & know that they will work well?
- Ensure the system's power and precision/accuracy constraints are met?

Application and
platform -dependent

Motivation

How BIG tech plans to feed AI's voracious appetite for power As data centers get more energy-hungry, the hyperscalers get more creative

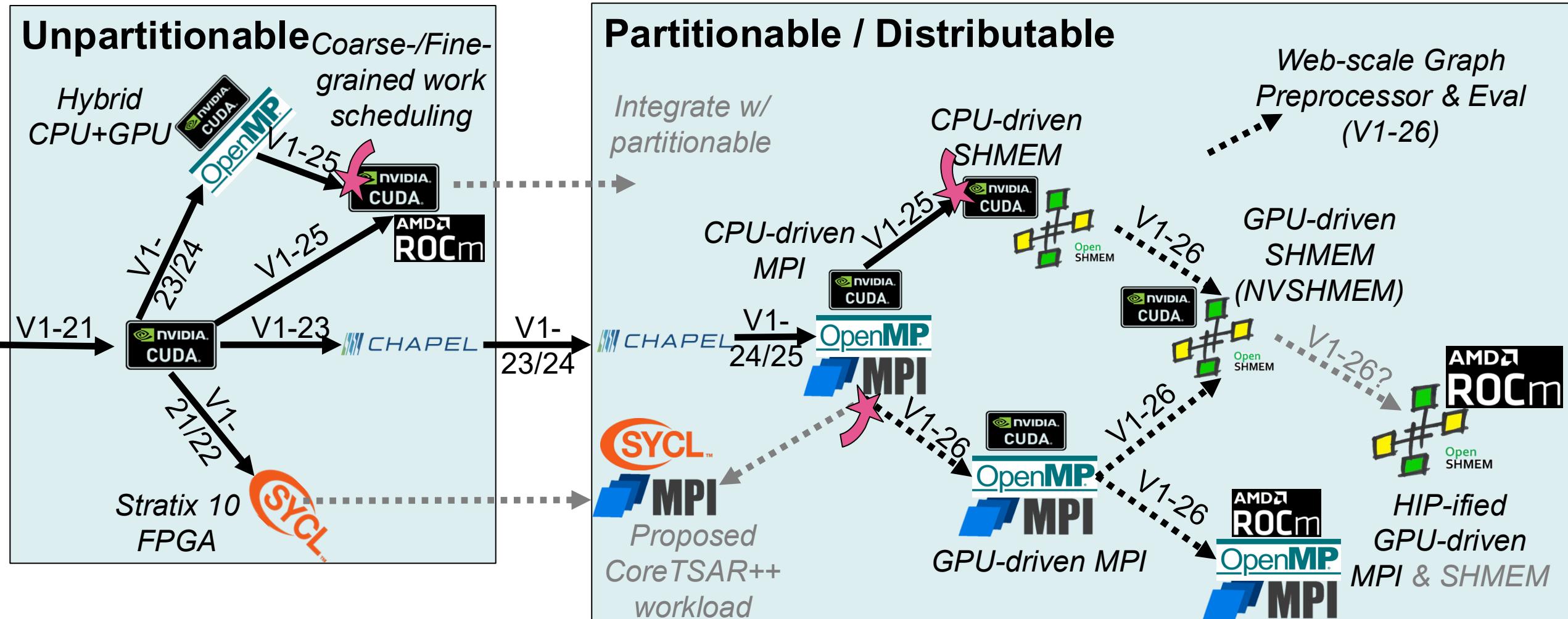
Gains from
Number representation
FP32, FP16, Int8
(TF32, BF16)
Complex instructions
DP4, HMMA, IMMA
Process
28nm, 16nm, 7nm, 5nm



Source: Nvidia Blog

Tasks 1a & 2: Context for Jaccard Similarity

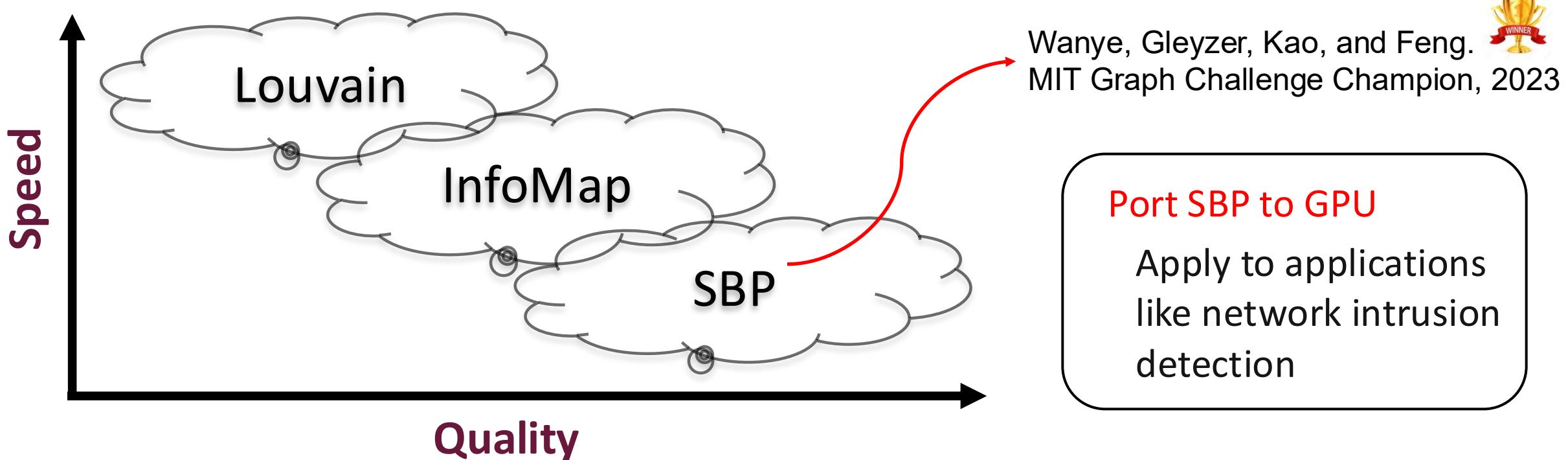
You are here



Tasks 1a, 1b, 1c, 1d, 2: Prospective Irregular Workload: SBP

Optimal graph clustering is NP-hard →

Enable fast and accurate graph clustering in large graphs by accelerating SBP

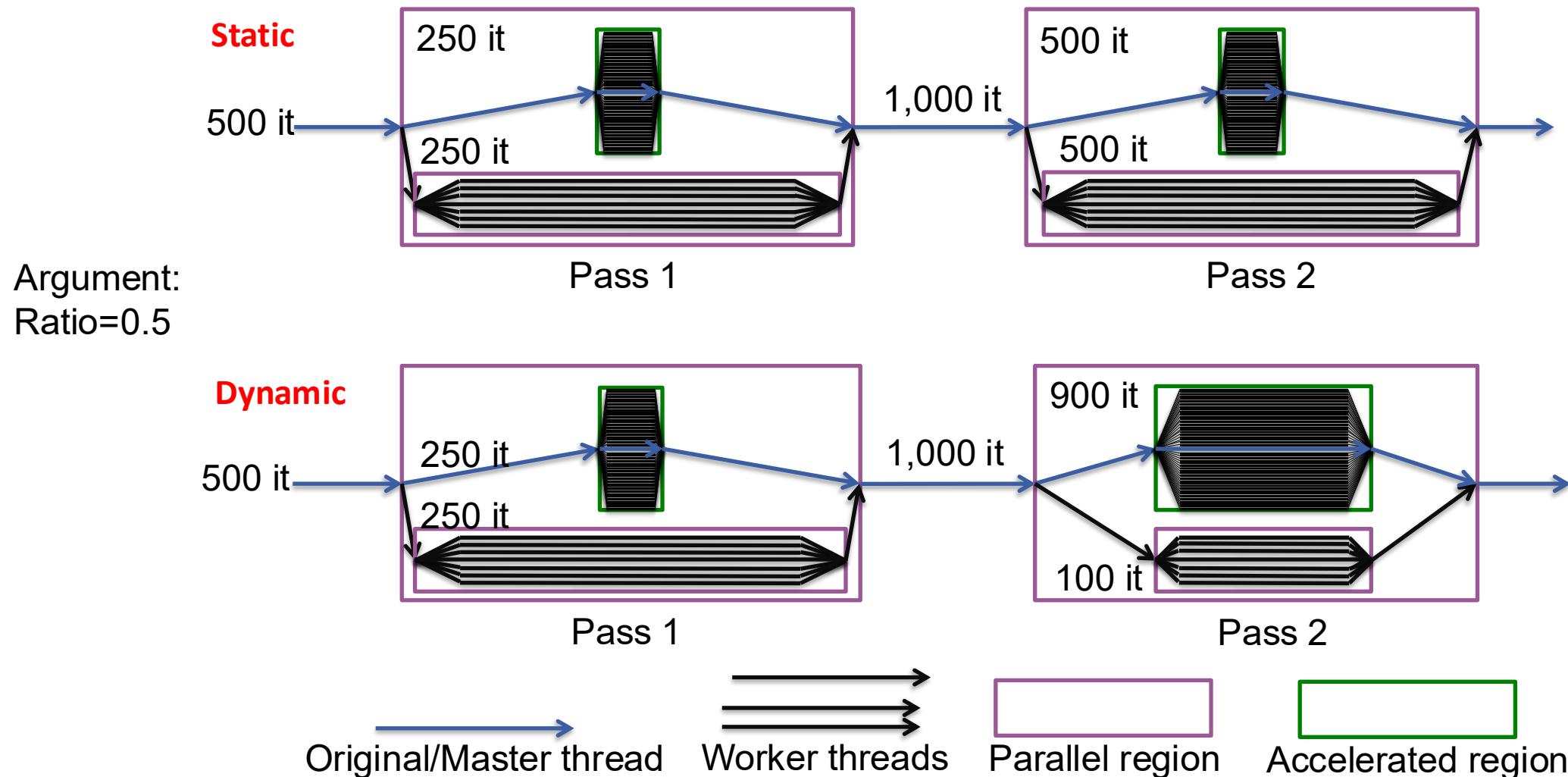


Task 1b: CoreTSAR: Core Task-Size Adapting Runtime

Static
Scheduler

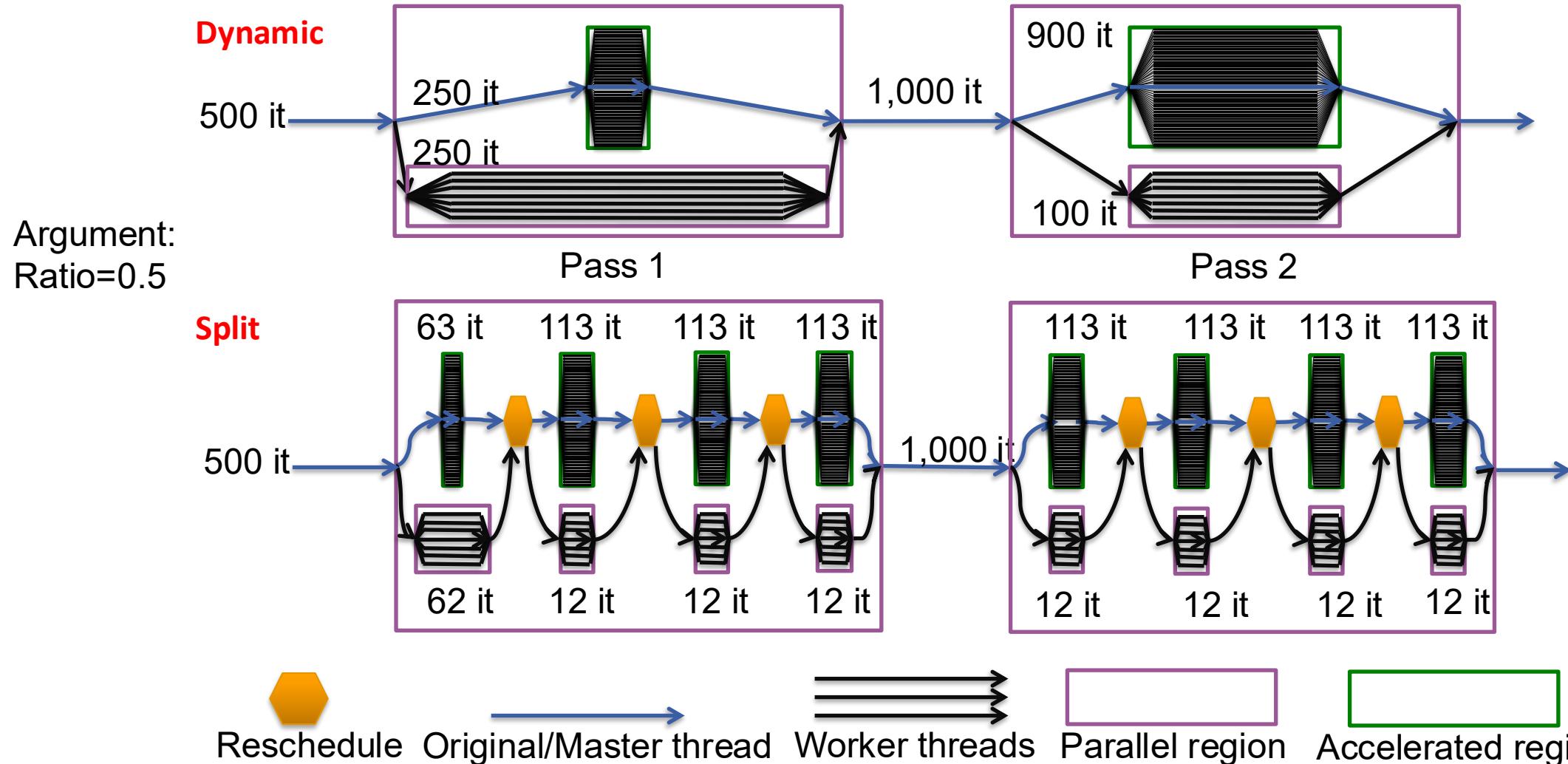


Task 1b: CoreTSAR: Core Task-Size Adapting Runtime Static vs. Dynamic Scheduler



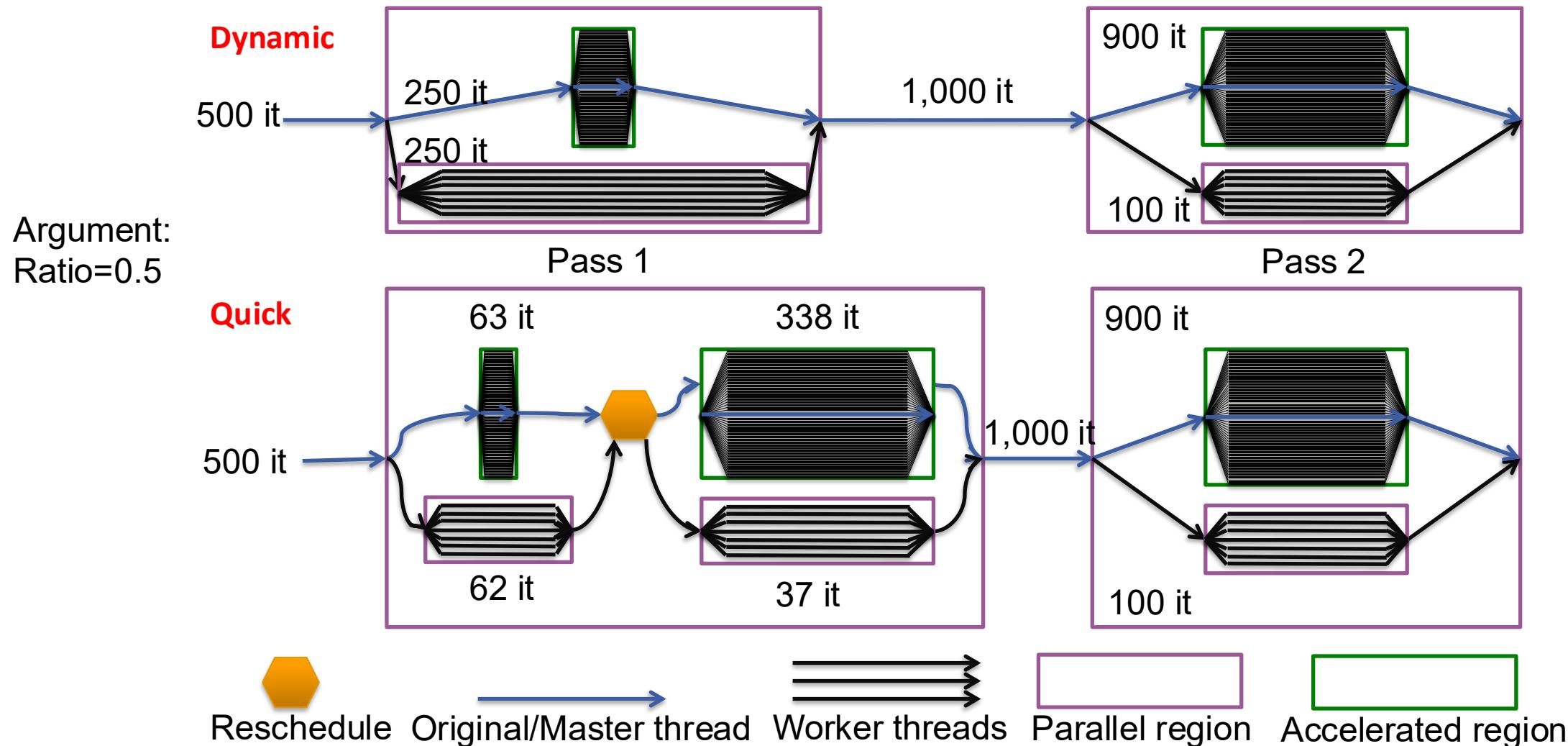
Task 1b: CoreTSAR: Core Task-Size Adapting Runtime

Dynamic vs. Split Scheduler



Task 1b: CoreTSAR: Core Task-Size Adapting Runtime

Split vs. Quick Scheduler



“Task 2b”: Modernization of OpenDwarfs

▪ Motivation:

- OpenDwarfs was a CHREC project to show how to map **13 parallel computational idioms to GPUs via OpenCL**
 - Part learning tool, part benchmark suite
 - Eventually extended to Intel/Altera FPGAs
- Now **many more paths** to portable, heterogeneous computing
- To bridge **programming gap** between high-level, *library-driven* heterogeneity, need examples of how to write *novel* kernels

▪ Approach:

- Showcase idiomatic parallel codes using modern portable langs.
- Modernize for new classes of devices, and compute modalities
 - {unified memory, PGAS, tensor cores, HBM, hybrid co-scheduling, DSPs, edge GPUs, ... }

▪ Milestones

1. Update existing OpenCL Dwarfs for modern devices → characterize perf. shifts (0.25)
2. Implement Dwarfs in new lang(s)., analyze perf./prod. (Π) vs. OpenCL (0.5 per lang.)
3. Design *partitionable/distributable* variants of existing dwarfs (1+)

