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= Tuning & optimization of performance, power, and precision (manual = automatic)
for productivity in heterogeneous computing systems: CPU + {cru, GPU, TPU, ... }

= Akin to DARPA HPCS program for homogeneous systems (e.g., Chapel, Fortress, X10) but
for heterogeneous systems (e.g., Chapel, oneAPI = SYCL, OpenSHMEM)

Goal: Productivity - Performance, Power, Precision

= Preferred Vehicle: Modern, Open Standard Languages & Runtimes = write once, run anywhere
= Metrics of Evaluation: Performance, Power [ Energy Efficiency, and Precision (e.g., int vs. SP vs. DP)
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https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032
https://developer.nvidia.com/embedded/jetson-developer-kits

Motivation & Background Past CHREC and SHREC memberships

on heterogeneous systems
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Performance (still matters but ...) Power (becoming an issue ...)
Evolution of Power Consumption & Dissipation per Rack (2000-2030) PreCiSion (Can add reSS both)
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Background: Performance & Power
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 Ranking of fastest supercomputers (Nov. 2025) based on

= High-performance LINPACK (HPL) - REGULAR workloads gfsoo B
= High-performance conjugate gradient (HPCG) > IRREGULAR workloa‘s —]

= GPU: 60%-85% of peak for regular workloads; 0%-5% for irregular worklpads

HPL vs HPCG Efficiency on Top Supercomputers (Nov 2025)

82.3% Supercomputer TOP500| HPCG Accelerator Peak Performance | Power

%01 mmm HPL-%ofRpeak === HPCG - % of Rpeak Preompeer | Rank | Rank Ryea(PElOD/S) | (MW)
0 El Capitan .
38 70 o 1 1 | AMD Instinct MI300A GPUs 2821.1|| 207
T2 64.1% — Frontier
W o :
&< (ORI USA) 2 3 | AMD Instinct MI250X GPUs 2055.0 || 24.6
w m |
¢ o 51.1% ‘(";‘:jf"fjs A 3 4 |Intel Data Center Max GPUs 1980.0 || 38.7
1]

= Fugaku .
E 8 (’"“g“”"“mKEN, Japan) 7 2 | Fujitsu AB4FX CPUs (no GPUs) 5372|| 299

e}
te LUMI 9 5 | AMD Instinct MI250X GPUs 5315/ 7.1
g o U (CSC, Finland)
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5% * Optimizations for performance and power
9 . . . .
'y v' Mixed-precision, tuning voltage/frequency
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e  Simultaneous co-scheduling for heterogeneity

v CPU + GPU co-scheduling, as appropriate

I @ University of BYU
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Approach

Tune and optimize the performance of a heterogeneous system

Characterize the power and energy of a heterogeneous system

* GPU device power via vendor tools (e.g., nvidia-smi)

* Total system power via power meters and software tools (e.g., RAPL)

Characterize the performance-vs-power tradeoff

* Performance per watt or energy-delay product

* Power vs. runtime = energy

Evolve the diversity of app benchmarks to evaluate the above

= Regular vsirregular. Double vs. single precision. CPU- vs memory-intensive — . = ‘

* Identify the best platform(s) and associated ecosystem(s) -0 W |
for performance, power, and/or precision (across many apps) m—

* Enable further performance, power, and precision-aware research: automated
co-scheduling at run-/compile-time, performance vs. power vs. precision tradeoff

Open Source Closed Source
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https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032
https://developer.nvidia.com/embedded/jetson-developer-kits

V1
Proposed Tasks for V1-26 Memberships: -

(Mandatory + Optional), e.g., (2+1)

* Task 1: Performance, Power/Energy, & Precision for Parallel Hetero Computing (2+5)
= Task1a: Energy-Efficient/Energy-Dominant Computing for Irregular Applications
= Task 1b: @Runtime: Simultaneous Co-scheduling on Heterogeneous Devices s :
* Task1c: @Compiler: Simultaneous Co-scheduling on Heterogeneous Devices
" Task1d: Portable Runtimes for Heterogeneous Task Graphs
" Task1e: Concurrent Data Structures for the GPU

PPPPPP
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* Task 2: High-Performance Distributed Computing with GPUs (2+2)
= Heterogeneous PGAS vs MPI+X for Large-Scale Compute

» Task 3: Performance & Power/Energy for Edge Computing (1+2) [
= Task 3a: Analysis of Portable Kernel Pipelines for Edge Devices |
* Task 3b: Modeling of Power/Energy Draw via Generative Al .,

aninconvenient
necessiity
A GLOBAL BENEFIT
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Task 1a: Energy-Efficient/Energy-Dominant Computing

Motivation

V1

* Power & energy are now first-order constraints

- Hyperscale data center guzzles 20 MW - 50 MW
on avg. (with energy consumption ~ 32 TWh) ~_

- Modern supercomputer uses 10 MW - 40 MW

The power of data [2]
US, data-centre energy consumption, TWh
By type
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Source: Lawrence Berkeley National Laboratory

Ar's Power Drive is Fuelling a Green Boom

yperscale data centres are guzzling elec-
tricity and water at an alarming rate.
For one, Google's sustainability report

wed that its electricity use went up 27% in
P

I Google Microsof

Al is projected to double the electricity use
of data centres by 2030, reaching 945
terawatt hours — more than Japan's
consumption today

= In 2024, data centres made up just 1.5% of global
electricity consumption, expected to grow to 3% by 2030,

In US, power consumption by data centres will account
for almost half of overall growth in demand by 2030

In US, data processing will consume more energy
than manufacturing of goods like aluminium,
steel, cement and chemicals

India has 2GW of installed data centre capacity consuming
electricity equivalent to 6.5 million Indian households

(3]

0

(4}

2017 2018 2019 2020 2021 2022 2023 2024

sions have also risen 23%-100% from the 2019
baseline. But this has also translated into a clean
energy drive. Himanshi Lohchab curates facts
and figures linked to Al's impact on power use.

2024 to 32 Terawatt-hours. Barclays says that
hyperscalers Google, Microsoft and Meta are

on track for their 7th consecutive year of 25%
growth in power demand. Their Scope 3 emis-
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Electricity generation mix

2020 2021 2022 2023 2024 2030 2024 2030

M Coal M Solar Pv M Hydro M Wind ™ Natural gas ' Nuclear ™ Bioenergy

Total installed capacity of date centres in India is set to double by 2030; While coal dominates
the electicity mix in India, the share of renewables increases to 35% by then

THE CLEAN ENERGY BOOM @ InMay 2024, Microsoft

® Google marked a record year announced a $10-billion deal
procuring 8GW of clean energy with Brookfield to develop
in 2024 including solar and wind green energy capacity of

projects in Mumbai and Delhi 10.5GW, the largest ever

@ Clean energy procurement @ Asia-Pacific secured a total of
marked a record 68GW of 27 GW of renewable capacity,
deals in 2024 with data centres up 60% year on year
accounting for 17GW o India accounted for

© Amazon, Google, Meta and more than 69% of this
Microsoft now have combined capacity, surpassing

clean energy portfolio of 84 GW

the US to become the largest
across 29 markets

market globally at 18 GW

Sources: INTERNATIONAL ENERGY AGENCY, GOOGLE SUSTAINABILITY REPORT, S&P GLOBAL COMMODITY INDEX, GOLDMAN SACHS RESEARCH
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Task 1a: Energy-Efficient/Energy-Dominant Computing

Motivation Supercomputer Tg:ﬁgo I-Ig:;gf Accelerator Pesk P?;flgll;rg?sr;ce ?&V\\;\?')r
+*peak
* Power & energy are now first-order constraints El Capitan .
gy f LR Vo) 1 1 | AMD Instinct MI300A GPUs 28211 29.7
- Hyperscale data center guzzles 20 MW - 50 MW on avg. Frontior
(With energy consumption ~32 TWh) (ORNL, USA) 2 3 | AMD Instinct MI250X GPUs 2055.0 24.6
- Modern supercomputer uses ~ 10 MW — 40 MW > aﬂfrﬁsA) 3 4 |Intel Data Center Max GPUs 1980.0|| 387
* Power- and energy-aware approaches needed to align Fugaku )
s g-y _ PP & (RIKEN, Japan) 7 2 | Fujitsu A64FX CPUs (no GPUs) 537.2|| 29.9
application behaviour with system-level power budgets
. v 9 5 | AMD Instinct MI250X GPUs 5315|| 7.1
Approach: Target Apps, Platforms, and Optimizations [(¢SC.Finiand

* Apps: Jaccard similarity (JS), conjugate gradient (CG), triangle counting (TC), [ your workload here ] (see appendix)
* Platforms: CPU/GPU/APU from AMD, Intel, or NVIDIA o i T
* App-level optimizations

(1) mixed- or reduced-precision computing and (2) fine-grained domain decomposition

Milestones
1. Application suite for tuning & optimization (i.e., power and energy efficiency)
2. Software-based scripting framework for power and energy measurement

3. Profiling database of power and energy data via hardware & software meters
* Power - vendor tools (e.g., nvidia-smi, rocm-smi)
* Energy = integration of power over runtime Validation of software meters

w.r.t. hardware meters? » BYU
:@ Mission-Critical Computing ~ Tasks: Baseline & Optional &) Bmabincah ey

" Domain
= -
= decomposition
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Task 1b: @QRuntime Simultaneous Co-scheduling for Heterogenei

HPL vs HPCG Efficiency on Top Supercomputers (Nov 2025)

Motivation
= Supercomputing nodes lean towards GPUs (3:1 GPU-to-CPU) =
presumption: more GPUs will benefit every application
* Alas, NOT the case for irregular applications = non-coalesced
memory accesses, branch divergence, heavy data movement
= Physiologically, we use two brains S|multaneouslv left and right

What about “in silico’”?
CPU and GPU simultaneously?

[s2]
(=]
|

I HPL - % of Rpeak ~ m@m HPCG - % of Rpeak

65.8%

[=1]
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|

Regular apps get 60%-
85% of peak FLOPs ©
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Irregular apps get 0%-
5% of peak FLOPs ®

as % of theoretical peak (Rpeak)
[ %]
o

Measured performance (PFlop/s)

=
o
|

Approach . H P e M |u
. . . \Y
= Efficacy of (manual) simultaneous co-scheduling of apps IR g R o w?
v' Broader evaluation across a larger collection of benchmarks (see appendix) _— N
oose the N )
= Build an automated scheduler that fits an accelerator programming model oD Inteligent Scheduler
(e.g., OpenMP or [backend of interest]| on any xPU) w/ minimal hassle CoreTSARMS o ARunime ’ cpu
. . . eedbac Assignmen
= Enable automated scheduling for runtime performance & energy cost s Assignments | . ! T
. ”” ” . HIPISYCLI... Ty
Milestones 0. Manual ”oracle” co-scheduling of resources AEMS}
Benchmark
1. CoreTSAR++ automated scheduler with accelerator programming model e ol ;
(e.g., OpenMP on any CPU+GPU; optionally, AMD HIP, oneAPI/SYCL Intel) 252 e —
. . . onal I : existing e&l‘(‘:lgEI'IBOIJSI.'II me
2. Power measurement methodology (prelude to energy-efficient scheduling) » [svﬂems-ﬂd programming models for wider adoption "R'S-J

3. EnergyTSAR++ > New scheduler to minimize runtime energy consumption

NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC) ( 1+1 ) ROCmM
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Task 1c: @Compile Simultaneous Co-scheduling for Heterogeneit

: Intermediate
Compiler Frontend .
Source Code H d Representation
Processing embedded DSL Choosing Data Layaut

Data-Layout Optimizations for Irregular Apps

* Motivation |

= Data layout often influences simultaneous co-scheduling of an app [ T
* Changing data layout = a schedule favoring different execution targets |

A

Choosing Schedule
[

= Challenge: Realizing different schedules by changing data layout ! ! !
° Ap proa C h CG Solver Performance: Scheduler vs. Data Format — {Muﬁ::_,;re} {CUSE‘I,UHP} EPGA ‘
= Template-based embedded DSL (in C++) to = rogeron ron T

abstract data layout from description of computation

= Compiler plugin to manipulate data layout of program
(e.g., MLIR dialect) and generate code accordingly

= Compiler support to guide co-scheduling of
CoreTSAR++ runtime
* Milestones

1. Bidirectional compiler support for CoreTSAR++ runtime to provide
data layout-aware scheduling for hetero execution targets.

Total Solve Time (s)
w o w

Hybrid CG Solver: Data Layout Dominance Regions

17.5 Data Format
NN CSR Runtime

15.0

=
o
=3

Total Solve Time (s)

2. Implementation & evaluation of irregular applications from
HeCBench in this compilation pipeline.

:@Mission-cmicalComputing Tasks: Baseline & Optional Performance Dominance | **

~
in
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AND RESILIENT COMPUTING (SHREC) ( 0O+1 ) Perfesc > Perfesy "




Task 1d: Portable Runtimes for Heterogeneous Task Graphs

OpenACC Application OpenMP Application Others (SYCL, Chapel, ...)

Motivation 23 w s
= Modern HPC requires device- and system-aware mapping 3T fmowencor  owr o "
of kernels, communication, and I/O to hardware B2 oo e e

= Hardware migration (translate, remap, retune) is a significant
cost [time, human, $$] which slows mission progress

= Portable [anguages help reduces translation component

= Remapping and re-tuning for new hardware still takes effort!
* Intelligent heterogeneous tasking systems can help!

* Given a portable representation, model and predict tradeoffs in mapping
kernels to different hardware in the system

Approach
= Implement SHREC-related applications using either in OpenMP [ OpenARC, or emerging UniSYCL compiler
= Leverage and evaluate the IRIS portable heterogeneous tasking system’s ability to achieve high performance

Milestones
1. ldentify and migrate/implement a SHREC workload in the IRIS runtime, analyze perf./prod. (IT) (0.5)

2. Evaluate perf./prod. (IT) on traditional heterogeneous HPC (CPU+GPU, homogeneous across nodes) (1)
3. Evaluate perf./prod. (IT) on multiply-heterogenous HPC (CPU+X, where X differs between nodes) (1)
4. Evaluate perf./prod. (IT) w/ edge+centralized hybrid workloads w/ heterogeneous platforms (2)

(i.e. data collection/reduction at the low-power edge, tightly coupled to high-power centralized analysis)

@ Mission-Critical Computing TaSkS: Base“ne & Optlonal @ ij)nlltvzgg){frf'gh BRI

Compute Devices

o [ o s R oot Rl o

Shared Virtual Device Memory
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https://iris-programming.github.io/

Task 1e: Concurrent Data Structures for the GPU

Obstruction-Free Lock-Free Wait-Free
M O tiva tion progress only if isolated ]_nﬂ'_w_du 5 miy predP all thrza:s::;:,:i:isd ;r;)sksteps
Thread1 [ 7 A7 A v | R

= (CPU concurrent data structures? MATURE (e.g., see Michael & Scott) U0 UUUU VAVAY,
= GPU concurrent data structures? NASCENT to NON-EXISTENT s I 7 Vm m m m ﬁ Z m 7
= GPU concurrency bottlenecks NOT addressed by current abstractions L [ __ | i | e
Approach D —

Analysis of Concurrent Queues for CPU Synthesis of Concurrent Queues for GPU

* Evaluate CPU queue designs o + Refactor for GPU [ CPU+GPU architecture

... with variations in progress guarantees (lock- ‘l v' Discrete: AMD MI200, NVIDIA A100/H200
free [ wait-free) v Fused: AMD MI300A, NVIDIA GH200

I Michael & Scott Queue " Yang & Mellor-Crummey Queue I I Refactored M&S Queue " Refactored Y&M Queue I
Milestones

1. Adaptation of CPU concurrent queues for GPU

*  Wait-Free-Queue (WFQ), Fetch-and-add based Queue (F&AQ)
2. Synthesis of GPU concurrent queues, e.g., bounded memory, cache-aware
3. Evaluation via microbenchmarks (BFS) and application (ray tracing)

Breadth-First Search Ray-Tracing

. . . niversity of BYU
5@ Mission-Critical Computing ~ 1aSKS: Baseline & Optional &) Biisbirgn oo
L M oA (0+1) 12 vz, UF
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Task 2: Heterogeneous PGAS vs MPI+X for Large-Scale (':omputem

Motivation Y g meonsoaal—
* Proliferation of programming models for distributed GPUs @ e ‘DJ";";
* MPI+CUDA/HIP, Chapel (PGAS), SHMEM (Open-, NV-/ROCm-) » ol Elmne
* Scale-out evaluation needs new inputs too large for 1 GPU (> 100GB) ()H()
= Small (<~1B-edge) graphs starve the GPUs of work when partitioned S B
Approach P ‘ ‘ ‘
* Implement new preprocessor for web-scale graphs (~10B-100B edges) ’/?;\ % «
* Refine and rigorously compare & contrast distributed GPU graph workloads ’S:V ‘”% %
= Jaccard similarity (MPI+X, Chapel, OpenSHMEM), ... [ your app here ] (see appendix) ’Q‘\\ 3 a2
Milestones < AMD B

1. LWA (web-scale) = bidirectional compressed sparse row (CSR) graph preprocessor

2. Comparative language analysis
" |ntra- and inter-node performance, productivity, power

= HIP for AMD GPU (MPI+X and OpenSHMEM) 57 Ao e B coeteevice,
= CPU-vs GPU—driven communication mOdels {parallel, single, taskloop, flush, critical, taskyield} Getoevic::iiﬁ: :':‘:Py
- _ ) WCHAPEL : coforall .. in .. with (.) {.} SFreimeviichraniZa¥;
3. Integration of intra-node hybrid JS approaches e —— o dins, <<carid.blocko,
= Coarseffine, CPU/GPU, 2d kernels, co-scheduled * 1 EORIRIRIR > oPu- | eckide blackin,
4. Additional graph workloads: triangle count, k-truss, etc. ﬁ“ﬂ : ML {Get, win {create, lock.all, MEHARBL o s
. . . . . ’ —dynamic, ’ ’ T | [ e s tomicAdd,
5. Explore reduced-width quantization of intersection kernels cosplete, nlock_all, free, wait, detach) || Var' gpupur: (-] burType -
N WCHAPEL: BlockDist, on locale {-}, hostBuf;
e localBuf = remoteBuf!; i

NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
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Task 2: Heterogeneous PGAS vs MPI+X vs SHMEM

= Capturing high-level language tradeoffs for parallel & distributed computing
(work in progress)

Feature Chapel | SHMEM MPI+X
Open- | NV-
GPU-driven communication NO NO YES Depends on “Can1 transfer GPU pointers without manually staging
implementation on the CPU>”
Consistent GPU/node AP YES NO Depends | NO “Do I copy between nodes and between the CPU and
GPU with the same API?”
Vendor-neutral API YES YES NO Depends on “Can my code run on another vendor’s hardware
without rewtites?”
kernel language
Independently-sized per-node YES NO NO Dynamic-only “Can | allocate different sizes of communicable data
GETable allocations on different ranks:
. “Can force a user-facing thread to spin in the
Exposed thread blocking NO YES ? YES foreground”
\ . “Can I allocate non-overlapping subsets of data across
Node-specific partial data YES If same If same YES ranks, and still communicate them?”
size size

. . ' Iniversity of BYU
Tasks: Baseline & Optional Bitvebatgh oo oo
AND RESILIET COMPUTIVG (SHREE) (2+2) \77 UF
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Task 3a: Analysis of Portable Kernel Pipelines for Edge Devices

Motivation
= Proliferation of edge devices creates a data bottleneck with centralized processing Datacenter Servers
= Moving pre-filtering and other compute to the edge reduces aggregate bandwidth and storage X
* Issue: Wide range of edge devices that require different programming approaches

* Challenge: Is there a robust path from portable HPC languages to low-power edge devices?
Approach
= Leverage portable, open HPC standards, and open-source toolchains to compute on edge GPU(s) |

Edge Devices

* Examples: OpenCL, SYCL, SPIR, Vulkan
= Metrics: performance, power, productivity, and performance/power
= Platforms: Raspberry Pi Compute Module (CM) 5 and Nvidia Jetson Orin Nano Super

= Workloads: Estimation of signal parameters via rotational invariant techniques (ESPRIT), FFT
convolution,

Mlleston es .«E;% o ')
. Raspberry Pi CMs via OpencL ¢ = {SPIR.-v - QYaikan. (0.5) :,tE  al A =
* FFT convolution, ESPRIT—> Perf. /Pgwer (IT) analysis -

0‘ /}
)
2. Nvidia Jetson Orin Nano via OpenCL > (SPIR-v> GQ/uican. (0.5) %»

3. MUSIC algorithm on Raspberry Pi CM5 and Nvidia Jetson Orin Nano Super

Mission-Critical Computing Tasks: Baseline & Optional ‘P‘“Sb“rgh ”"‘:f-f"l‘?i.fff“\"
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https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032
https://developer.nvidia.com/embedded/jetson-developer-kits
https://www.vulkan.org/
https://www.khronos.org/spir/
https://www.vulkan.org/
https://www.khronos.org/spir/
https://www.vulkan.org/
https://www.khronos.org/spir/

Task 3b: Modeling of Power/Energy Draw via Generative Al
~

o

-
N
[N

Motivation Datacenter Servers % Lo 5 . .
(- =
. . . = 1 bt .
= Environment: Tactical computing on the edge Y 2 £ o o
(i.e., move from datacenter to the edge) V| |\Q 3 0% 59 o _
. . 2 09 £ .4 Memory Interconnect Power = Energy/bit/mm *
= Challenge: Edge devices energy-constrained Edae Devi E os 3 avg. distance * avg. bits/sec * scaled voltage? *
: ge Levices z g o2 scaled frequency * avg. toggle rate
* How to deploy generative Al models that are 08 s duengy - ava. 199
constrained by the “Al Memory Wall,” where energy short Long % s 10 15 20
. . . k Path Path Distance {(mm) /
consumption is dominated by data movement
Summary of GenAl demand forecast le+09 Training FLOPs Scaling for SOTA Models
" State Of the Art Note: Total USelcl:li?:imt:d\:‘::i:'g—u&OOOTWh (2023) 1 G":a
le+08+ nansf?rrlnaev::' 752: / : ;E MictosafeENLG
* Reliance on oversimplified linear models that do NOT S, IR i B
. . * Inference S E| XiNetog ° ®
capture complex, non-linear dynamics of today’s GPU | v H -
Approach .eaal |
= Memory-centric energy-modeling framework that integrates actual B
measurements and intelligent optimization to enable accurate predictionand “armmmEE T mw w=
systematic minimization of energy use in transformer-based models S
* Memory access can be 100-200 times more energy-intensive than computation o] wweema | ez _—n |
* Re-orientation of the energy optimization problem around data movement, creating & ...
new pathways to deploy powerful foundational models on edge & tactical hardware o o
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V1
Proposed Tasks for V1-26 Memberships: -

(Mandatory + Optional), e.g., (2+1)

* Task 1: Performance, Power/Energy, & Precision for Parallel Hetero Computing (2+5)
= Task1a: Energy-Efficient/Energy-Dominant Computing for Irregular Applications
= Task 1b: @Runtime: Simultaneous Co-scheduling on Heterogeneous Devices s :
* Task1c: @Compiler: Simultaneous Co-scheduling on Heterogeneous Devices
" Task1d: Portable Runtimes for Heterogeneous Task Graphs
" Task1e: Concurrent Data Structures for the GPU

PPPPPP

nnnnnnnnn

* Task 2: High-Performance Distributed Computing with GPUs (2+2)
= Heterogeneous PGAS vs MPI+X for Large-Scale Compute

» Task 3: Performance & Power/Energy for Edge Computing (1+2) [
= Task 3a: Analysis of Portable Kernel Pipelines for Edge Devices |
* Task 3b: Modeling of Power/Energy Draw via Generative Al .,

aninconvenient
necessiity
A GLOBAL BENEFIT

1d93eyD :4se1un0>
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Background & Motivation

= Extend our R&D to create and analyze an ecosystem of tools, environments, and
benchmarks for heterogeneous computing

Past CHREC-
and

SHREC-funded (~

R&D

= Challenges: How to productively ...
* Program an application so it runs on many platforms?
= Evaluate a processor architecture & compare it to others?
= Develop back-end optimizations & know that they will work well?
= Ensure the system’s power and precision/accuracy constraints are met? _

Tools & Environments

/
Benchmarks m>

i
oper®""

\_

N

-
Progra mming Ecosystems

OpenCL

/‘OpenMP W cHAPEL OpenACC f%.

’MPI @CL i, | AMDb‘l

' ROCm

SHMEM j

Application and
platform -dependent

NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC)
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Motivation

How BIG tech plans to feed Al’s voracious appetite for power
As data centers get more energy-hungry, the hyperscalers get more creative

4500.00

Gains from 169000

. 3500.00
Number representation

Single-Chip Inference Performance - 1000X in 10 years Single-Chip Inference Performance - 1000X in 10 years
Hioo 4000.00 4500.00
FP8 H100
Transformer 4000.00 _ :
Eng

3500.00
FP32, FP16, Int8 3000.00
(TF32, BF16) 3000.00
& 2500.00
2 5 o 0 2500.00
Complex instructions ® o ]
€ 2000.00 A ~
DP4, HMMA, IMMA = P E o000
Sparsity FP32
1500.00 e
Process
g HMMA IMMA
28nm, 16nm, 7nm, Snm 1000.00 g T B oo
——— DP4A Cores 8(‘"'95
500.00 catar Q8000
y V100 50000
K20X M40“OO 125.00 e X20X
3.94 6.8421.20 e
0.00 000
4112 81413 12027114 510116 92217 214119  6/18/20 10/31/21 3/1% a2 81413 12/27/34 5/10/16 snn 2/4/19 6/18/20 wiya 3/15/23

Source: Nvidia Blog
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Tasks 1a & 2: Context for Jaccard Similarity

UnpartitionabIeCoarse_/F,-ne_

grained work
scheduling

NSF CENTER FOR SPACE, HIGH-PERFORMANCE,

/ O %RESILIENT COMPUTING (SHREC)

You are here }
Partitionable / Distributable
Web-scale Graph
Integrate w/ . Preprocessor & Eval
g CPU-driven R 4 (V1-26)
partitionable HMEM o*
........... S Zm"m
q’b CUD GPU-driven
CPU-driven \\s
> SﬁMEM e 96‘ SHMEM
A (NVSHMEM)
CUDA
l” . PELZW Openlwp? SHMEM. V7 AMD:'
'}‘ g ROC
SYCL “ 0{)6\ 7 A"‘ gll-)l:/InEM
I 4 |V||’|‘r * QertP;, ~V7~e M HIP-ified
el NPl "%
ropose ‘W GPU-driven
CoreTSAR++ GPU-driven MPI OpenMIP o o cnE
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Tasks 1a, 1b, 1c, 1d, 2: Prospective Irregular Workload: SBP

Wanye, Gleyzer, Kao, and Feng. #.L
MIT Graph Challenge Champion, 2023

Port SBP to GPU )

Apply to applications
like network intrusion
detection

o J

Speed

Quality

University of BYU
@ Wission-Critical Computing ™ E, Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra, P. Monticciolo, A. Reuther, S. Samsi, W. Pittsburgh peyiy

NSF CENTER FOR SPACE, HIGH-PERFORMANCE, . . X . . w‘““
AND RESILIENT COMPUTING (SHREC) Wong, D. Staheli, S. Smith, “Streaming Graph Challenge: Stochastic Block Partition,” Proc. IEEE HPEC, vmcv.?mm
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Task 1b: CoreTSAR: Core Task-Size Adapting Runtime
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Ratio: 0.5
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1,000 it

Pass 1

>

Ratio: 0.5

500 it

500 it

Pass 2

>

>

>

Original/Master thread Worker threads Parallel region  Accelerated region

Static
Scheduler
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Task 1b: CoreTSAR: Core Task-Size Adapting Runtime

Static vs. Dynamic

Scheduler
Static 250 it 500 it
1,000 it
500 it ’
| 250 it 500 it
Argument: Pass 1 Pass 2
Ratio=0.5
Dynamic
500 it 250 1,000 it
250 it
Pass 1 Pass 2
=
>
=

>
Original/Master thread Worker threads Parallel region Accelerated region
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Task 1b: CoreTSAR: Core Task-Size Adapting Runtime Dynamic vs. Split

Scheduler

Dynamic 900 it
250 j 1,000 it
250 jt

500 it

Argument: 100 it
Ratio=0.5 Pass 1 Pass 2

Split 63it 113it 113t 113 it 113it 113t 113it 113t

500 it

(RN (e
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2 it

2 it

w > <
Reschedule Original/Master thread Worker threads Parallel region Accelerated region
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Task 1b: CoreTSAR: Core Task-Size Adapting Runtime

Dynamic
500 it
Argument:
Ratio=0.5
Quick

500 it

Reschedule Original/Master thread Worker threads Parallel region Accelerated region

1,000 it

100 it

62 it

1,000 if

Pass 2

900 it

100 it

Split vs. Quick

Scheduler
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“Task 2b”: Modernization of OpenDwarfs

i i Goal: “Write once, run anywhere”
= Motivation:

= OpenDwarfs was a CHREC project to show how to map » o OpenDwarfs
13 parallel computational idioms to GPUs via OpenCL
* Part learning tool, part benchmark suite — OpenCL
* Eventually extended to Intel/Altera FPGAs o OpenMP 4+
= Now many more paths to portable, heterogeneous computing = | SYCL
= To bridge programming gap between high-level, library-driven — Chapel
heterogeneity, need examples of how to write novel kernels P
= Approach: — Vulkan Compute
" Showcase idiomatic parallel codes using modern portable langs._L__ s+4: :parallel
= Modernize for new classes of devices, and compute modalities
* {unified memory, PGAS, tensor cores, HBM, hybrid co-scheduling, DSPs, edge GPUs, ... } ?
= Milestones

1. Update existing OpenCL Dwarfs for modern devices > characterize perf. shifts (0.25)
2. Implement Dwarfs in new lang(s)., analyze perf./prod. (IT) vs. OpenCL (0.5 per lang.)
3. Design partitionable/distributable variants of existing dwarfs (1+)

University of BYU
Pittsburgh s voune

Mission-Critical C ti : ;
:@Ns:;i::.:‘m;:..;f;,?,.ﬁ..f::;;s.:;::c%, Tasks: Optional (-2 memberships) -
AND RESILIENT COMPUTING (SHREC) w


https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032

	Default Section
	Slide 1: V1-26: Performance, Power, and Precision, of Heterogeneous Systems
	Slide 2: Goal: Productivity  Performance, Power, Precision
	Slide 3: Motivation & Background
	Slide 4: Background: Performance & Power
	Slide 5: Approach
	Slide 6: Proposed Tasks for V1-26
	Slide 7: Task 1a: Energy-Efficient/Energy-Dominant Computing
	Slide 8: Task 1a: Energy-Efficient/Energy-Dominant Computing
	Slide 9: Task 1b: @Runtime Simultaneous Co-scheduling for Heterogeneity
	Slide 10: Task 1c: @Compile Simultaneous Co-scheduling for Heterogeneity 
	Slide 11: Task 1d: Portable Runtimes for Heterogeneous Task Graphs
	Slide 12: Task 1e: Concurrent Data Structures for the GPU
	Slide 13: Task 2: Heterogeneous PGAS vs MPI+X for Large-Scale Compute 
	Slide 14: Task 2: Heterogeneous PGAS vs MPI+X vs SHMEM
	Slide 15: Task 3a: Analysis of Portable Kernel Pipelines for Edge Devices
	Slide 16: Task 3b: Modeling of Power/Energy Draw via Generative AI  
	Slide 17: Proposed Tasks for V1-26

	Appendix
	Slide 18: Appendix
	Slide 19: Background & Motivation
	Slide 20: Motivation
	Slide 21: Tasks 1a & 2:  Context for Jaccard Similarity
	Slide 22
	Slide 23: Task 1b: CoreTSAR: Core Task-Size Adapting Runtime
	Slide 24: Task 1b: CoreTSAR: Core Task-Size Adapting Runtime
	Slide 25: Task 1b: CoreTSAR: Core Task-Size Adapting Runtime
	Slide 26: Task 1b: CoreTSAR: Core Task-Size Adapting Runtime
	Slide 27: “Task 2b”: Modernization of OpenDwarfs


