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V1
Goal: Productivity → Performance, Power, Precision

▪ Tuning & optimization of performance, power, and precision (manual → automatic) 
for productivity in heterogeneous computing systems: CPU + {CPU, GPU, TPU, …}

▪ Akin to DARPA HPCS program for homogeneous systems (e.g., Chapel, Fortress, X10) but 
for heterogeneous systems (e.g., Chapel, oneAPI → SYCL, OpenSHMEM)

▪ Preferred Vehicle: Modern, Open Standard Languages & Runtimes → write once, run anywhere

▪ Metrics of Evaluation: Performance, Power / Energy Efficiency, and Precision (e.g., int vs. SP vs. DP)
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https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032
https://developer.nvidia.com/embedded/jetson-developer-kits


V1

Precision (can address both)

Performance (still matters but …) Power (becoming an issue …)

ILP + DLP + TLP + RPP

x

9 kW/rack = 126 kW

Highest-ranked commodity 

supercomputer in the USA 

on the Green500

Motivation & Background
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Tools & Environments

Past CHREC and SHREC memberships 
on heterogeneous systems

Programming Ecosystems Benchmarks

ILP: instruction-level parallelism

DLP: data-level parallelism

TLP: thread-level parallelism

RPP: reduced-precision parallelism
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V1
Background: Performance & Power

• Ranking of fastest supercomputers (Nov. 2025) based on
▪ High-performance LINPACK (HPL) → REGULAR workloads

▪ High-performance conjugate gradient (HPCG) → IRREGULAR workloads

▪ GPU: 60%-85% of peak for regular workloads; 0%-5% for irregular workloads 

• Optimizations for performance and power
✓ Mixed-precision, tuning voltage/frequency

• Simultaneous co-scheduling for heterogeneity
✓ CPU + GPU co-scheduling, as appropriate

GPU GPU GPU GPUCPU



V1
Approach

• Tune and optimize the performance of a heterogeneous system

• Characterize the power and energy of a heterogeneous system
• GPU device power via vendor tools (e.g., nvidia-smi)

• Total system power via power meters and software tools (e.g., RAPL)

• Characterize the performance-vs-power tradeoff
• Performance per watt or energy-delay product

• Power vs. runtime → energy

• Evolve the diversity of app benchmarks to evaluate the above
▪ Regular vs irregular. Double vs. single precision. CPU- vs memory-intensive

• Identify the best platform(s) and associated ecosystem(s)
for performance, power, and/or precision (across many apps)

• Enable further performance, power, and precision-aware research:  automated 
co-scheduling at run-/compile-time, performance vs. power vs. precision tradeoff 

Open Source Closed Source

Picture 6
Picture 8

https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032
https://developer.nvidia.com/embedded/jetson-developer-kits


V1
Proposed Tasks for V1-26

• Task 1: Performance, Power/Energy, & Precision for Parallel Hetero Computing (2+5)
▪ Task 1a: Energy-Efficient/Energy-Dominant Computing for Irregular Applications

▪ Task 1b:  @Runtime: Simultaneous Co-scheduling on Heterogeneous Devices 

▪ Task 1c:  @Compiler: Simultaneous Co-scheduling on Heterogeneous Devices

▪ Task 1d:  Portable Runtimes for Heterogeneous Task Graphs

▪ Task 1e:  Concurrent Data Structures for the GPU

• Task 2: High-Performance Distributed Computing with GPUs (2+2) 
▪ Heterogeneous PGAS vs MPI+X for Large-Scale Compute 

 

• Task 3: Performance & Power/Energy for Edge Computing (1+2)
▪ Task 3a:  Analysis of Portable Kernel Pipelines for Edge Devices 

▪ Task 3b:  Modeling of Power/Energy Draw via Generative AI
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Memberships: 

(Mandatory + Optional), e.g., (2+1)

Picture 6

https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032


V1
Task 1a: Energy-Efficient/Energy-Dominant Computing

Motivation
• Power & energy are now first-order constraints

- Hyperscale data center guzzles 20 MW – 50 MW 
on avg. (with energy consumption ~ 32 TWh) 

- Modern supercomputer uses 10 MW – 40 MW

7



V1
Task 1a: Energy-Efficient/Energy-Dominant Computing

Motivation
• Power & energy are now first-order constraints

- Hyperscale data center guzzles 20 MW – 50 MW on avg. 
(with energy consumption ~ 32 TWh) 

- Modern supercomputer uses ~ 10 MW – 40 MW

• Power- and energy-aware approaches needed to align 
application behaviour with system-level power budgets

Approach: Target Apps, Platforms, and Optimizations
• Apps: Jaccard similarity (JS), conjugate gradient (CG), triangle counting (TC), [ your workload here ] (see appendix)

• Platforms: CPU/GPU/APU from AMD, Intel, or NVIDIA

• App-level optimizations
- (1) mixed- or reduced-precision computing and (2) fine-grained domain decomposition

Milestones
1. Application suite for tuning & optimization (i.e., power and energy efficiency)

2. Software-based scripting framework for power and energy measurement

3. Profiling database of power and energy data via hardware & software meters 
• Power → vendor tools (e.g., nvidia-smi, rocm-smi)
• Energy → integration of power over runtime
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Domain 

decomposition

Tasks: Baseline & Optional
 ( 1 + 0 )

Validation of software meters 
w.r.t. hardware meters?



V1
Task 1b: @Runtime Simultaneous Co-scheduling for Heterogeneity

Motivation
▪ Supercomputing nodes lean towards GPUs (3:1 GPU-to-CPU) → 

presumption: more GPUs will benefit every application

• Alas, NOT the case for irregular applications → non-coalesced 
memory accesses, branch divergence, heavy data movement

▪ Physiologically, we use two brains simultaneously – left and right 
What about “in silico”? 
CPU and GPU simultaneously?
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Irregular apps get 0%-

5% of peak FLOPs 

Approach
▪ Efficacy of (manual) simultaneous co-scheduling of apps
✓ Broader evaluation across a larger collection of benchmarks (see appendix)

▪ Build an automated scheduler that fits an accelerator programming model 
(e.g., OpenMP or [backend of interest] on any xPU) w/ minimal hassle

▪ Enable automated scheduling for runtime performance & energy cost

Milestones    0. Manual ”oracle” co-scheduling of resources
1. CoreTSAR++ automated scheduler with accelerator programming model 

(e.g., OpenMP on any CPU+GPU; optionally, AMD HIP, oneAPI/SYCL Intel)
2. Power measurement methodology (prelude to energy-efficient scheduling)
3. EnergyTSAR++ → New scheduler to minimize runtime energy consumption

Tasks: Baseline & Optional
 ( 1 + 1 )

Regular apps get 60%-

85% of peak FLOPs ☺



V1
Task 1c: @Compile Simultaneous Co-scheduling for Heterogeneity 

Data-Layout Optimizations for Irregular Apps

• Motivation
▪ Data layout often influences simultaneous co-scheduling of an app

• Changing data layout → a schedule favoring different execution targets

▪ Challenge: Realizing different schedules by changing data layout 

• Approach 
▪ Template-based embedded DSL (in C++) to 

abstract data layout from description of computation

▪ Compiler plugin to manipulate data layout of program 
(e.g., MLIR dialect) and generate code accordingly

▪ Compiler support to guide co-scheduling of
CoreTSAR++ runtime

• Milestones

1. Bidirectional compiler support for CoreTSAR++ runtime to provide 
data layout-aware scheduling for hetero execution targets.

2. Implementation & evaluation of irregular applications from 
HeCBench in this compilation pipeline.

10
Tasks: Baseline & Optional
 ( 0 + 1 )



V1
Task 1d: Portable Runtimes for Heterogeneous Task Graphs

Motivation
▪ Modern HPC requires device- and system-aware mapping

of kernels, communication, and I/O to hardware
▪ Hardware migration (translate, remap, retune) is a significant

cost [time, human, $$] which slows mission progress
▪ Portable languages help reduces translation component

▪ Remapping and re-tuning for new hardware still takes effort!
• Intelligent heterogeneous tasking systems can help!

• Given a portable representation, model and predict tradeoffs in mapping
kernels to different hardware in the system

Approach
▪ Implement SHREC-related applications using either in OpenMP / OpenARC, or emerging UniSYCL compiler

▪ Leverage and evaluate the IRIS portable heterogeneous tasking system’s ability to achieve high performance

Milestones
1. Identify and migrate/implement a SHREC workload in the IRIS runtime, analyze perf./prod. () (0.5)
2. Evaluate perf./prod. () on traditional heterogeneous HPC (CPU+GPU, homogeneous across nodes) (1)

3. Evaluate perf./prod. () on multiply-heterogenous HPC (CPU+X, where X differs between nodes) (1)
4. Evaluate perf./prod. () w/ edge+centralized hybrid workloads w/ heterogeneous platforms (2)

(i.e. data collection/reduction at the low-power edge, tightly coupled to high-power centralized analysis)
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Tasks: Baseline & Optional
 ( 0 + 2 )

https://iris-programming.github.io/


V1

Motivation 
▪ CPU concurrent data structures? MATURE (e.g., see Michael & Scott) 

▪ GPU concurrent data structures? NASCENT to NON-EXISTENT

▪ GPU concurrency bottlenecks NOT addressed by current abstractions

Approach

Milestones

Synthesis of Concurrent Queues for GPU

• Refactor for GPU / CPU+GPU architecture
✓ Discrete:  AMD MI200, NVIDIA A100/H200

✓ Fused: AMD MI300A, NVIDIA GH200

Task 1e: Concurrent Data Structures for the GPU

Analysis of Concurrent Queues for CPU

• Evaluate CPU queue designs
... with variations in progress guarantees (lock-

free / wait-free)
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Ray-Tracing

Michael & Scott Queue Yang & Mellor-Crummey Queue Refactored M&S Queue

1. Adaptation of CPU concurrent queues for GPU
• Wait-Free-Queue (WFQ), Fetch-and-add based Queue (F&AQ)

2. Synthesis of GPU concurrent queues, e.g., bounded memory, cache-aware

3. Evaluation via microbenchmarks (BFS) and application (ray tracing)

Tasks: Baseline & Optional
 ( 0 + 1 )

Breadth-First Search

Refactored Y&M Queue
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Task 2: Heterogeneous PGAS vs MPI+X for Large-Scale Compute 

Motivation
• Proliferation of programming models for distributed GPUs
▪ MPI+CUDA/HIP, Chapel (PGAS), SHMEM (Open-, NV-/ROCm-)

• Scale-out evaluation needs new inputs too large for 1 GPU (> 100GB)
▪ Small (<~1B-edge) graphs starve the GPUs of work when partitioned

Approach
• Implement new preprocessor for web-scale graphs (~10B-100B edges)
• Refine and rigorously compare & contrast distributed GPU graph workloads
▪ Jaccard similarity (MPI+X, Chapel, OpenSHMEM), … [ your app here ]  (see appendix)

Milestones
1. LWA (web-scale) → bidirectional compressed sparse row (CSR) graph preprocessor 
2. Comparative language analysis
▪ Intra- and inter-node performance, productivity, power
▪ HIP for AMD GPU (MPI+X and OpenSHMEM)
▪ CPU- vs. GPU-driven communication models

3. Integration of intra-node hybrid JS approaches
▪ Coarse/fine, CPU/GPU, 2d kernels, co-scheduled

4. Additional graph workloads: triangle count, k-truss, etc.
5. Explore reduced-width quantization of intersection kernels

13
Tasks: Baseline & Optional
 ( 2 + 2 )



V1

▪ Capturing high-level language tradeoffs for parallel & distributed computing 
(work in progress)

Task 2: Heterogeneous PGAS vs MPI+X vs SHMEM

Feature Chapel SHMEM MPI+X

Open- NV-

GPU-driven communication NO NO YES Depends on 

implementation

Consistent GPU/node API YES NO Depends NO

Vendor-neutral API YES YES NO Depends on 

kernel language

Independently-sized per-node 

GETable allocations

YES NO NO Dynamic-only

Exposed thread blocking NO YES ? YES

Node-specific partial data YES If same 

size

If same 

size

YES

“Can I transfer GPU pointers without manually staging 

on the CPU?”

“Do I copy between nodes and between the CPU and 

GPU with the same API?”

“Can my code run on another vendor’s hardware 

without rewrites?”

“Can I allocate different sizes of communicable data 

on different ranks?”

“Can I force a user-facing thread to spin in the 

foreground?”

“Can I allocate non-overlapping subsets of  data across 

ranks, and still communicate them?”

Tasks: Baseline & Optional
 ( 2 + 2 )
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Task 3a: Analysis of Portable Kernel Pipelines for Edge Devices

Milestones
1. Raspberry Pi CM5 via OpenCL C →               -V →           (0.5)

• FFT convolution, ESPRIT→ Perf./Power () analysis

2. Nvidia Jetson Orin Nano via OpenCL C→            -V→   (0.5)
3. MUSIC algorithm on Raspberry Pi CM5 and Nvidia Jetson Orin Nano Super
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Tasks: Baseline & Optional
 ( 1 + 1 )

Motivation
▪ Proliferation of edge devices creates a data bottleneck with centralized processing

▪ Moving pre-filtering and other compute to the edge reduces aggregate bandwidth and storage

• Issue: Wide range of edge devices that require different programming approaches

• Challenge:  Is there a robust path from portable HPC languages to low-power edge devices?

Approach
▪ Leverage portable, open HPC standards, and open-source toolchains to compute on edge GPU(s)

• Examples:  OpenCL, SYCL, SPIR, Vulkan

▪ Metrics: performance, power, productivity, and performance/power

▪ Platforms: Raspberry Pi Compute Module (CM) 5 and Nvidia Jetson Orin Nano Super

▪ Workloads: Estimation of signal parameters via rotational invariant techniques (ESPRIT), FFT 
convolution, [ your workload here ], multiple signal classification (MUSIC)

Datacenter Servers

Edge Devices

https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032
https://developer.nvidia.com/embedded/jetson-developer-kits
https://www.vulkan.org/
https://www.khronos.org/spir/
https://www.vulkan.org/
https://www.khronos.org/spir/
https://www.vulkan.org/
https://www.khronos.org/spir/
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Task 3b: Modeling of Power/Energy Draw via Generative AI

 
Motivation

▪ Environment: Tactical computing on the edge 
(i.e., move from datacenter to the edge)

▪ Challenge: Edge devices energy-constrained

• How to deploy generative AI models that are 
constrained by the “AI Memory Wall,” where energy 
consumption is dominated by data movement 

▪ State of the Art  

• Reliance on oversimplified linear models that do NOT 
capture complex, non-linear dynamics of today’s GPU

16

Datacenter Servers

Edge Devices

Approach

▪ Memory-centric energy-modeling framework that integrates actual 
measurements and intelligent optimization to enable accurate prediction and 
systematic minimization of energy use in transformer-based models 

• Memory access can be 100-200 times more energy-intensive than computation

• Re-orientation of the energy optimization problem around data movement, creating 
new pathways to deploy powerful foundational models on edge & tactical hardware

Memory Interconnect Power = Energy/bit/mm * 

avg. distance *  avg. bits/sec * scaled voltage2 * 

scaled frequency * avg. toggle rate

Source: Adhinarayanan, Paul, 

Greathouse, Huang, Pattnaik, Feng. 
IISWC, 2016. Best Paper Award

Tasks: Baseline & Optional
 ( 0 + 1 )



V1
Proposed Tasks for V1-26

• Task 1: Performance, Power/Energy, & Precision for Parallel Hetero Computing (2+5)
▪ Task 1a: Energy-Efficient/Energy-Dominant Computing for Irregular Applications

▪ Task 1b:  @Runtime: Simultaneous Co-scheduling on Heterogeneous Devices 

▪ Task 1c:  @Compiler: Simultaneous Co-scheduling on Heterogeneous Devices

▪ Task 1d:  Portable Runtimes for Heterogeneous Task Graphs

▪ Task 1e:  Concurrent Data Structures for the GPU

• Task 2: High-Performance Distributed Computing with GPUs (2+2) 
▪ Heterogeneous PGAS vs MPI+X for Large-Scale Compute 

 

• Task 3: Performance & Power/Energy for Edge Computing (1+2)
▪ Task 3a:  Analysis of Portable Kernel Pipelines for Edge Devices 

▪ Task 3b:  Modeling of Power/Energy Draw via Generative AI
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Memberships: 

(Mandatory + Optional), e.g., (2+1)

Picture 6

https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032
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Appendix

18



V1
Background & Motivation

▪ Extend our R&D to create and analyze an ecosystem of tools, environments, and 
benchmarks for heterogeneous computing

▪ Challenges: How to productively …
▪ Program an application so it runs on many platforms?

▪ Evaluate a processor architecture & compare it to others?

▪ Develop back-end optimizations & know that they will work well?

▪ Ensure the system’s power and precision/accuracy constraints are met?

19

Tools & Environments Benchmarks

Devices Programming Ecosystems

Application and 
platform -dependent

Past CHREC- 
and

SHREC-funded 
R&D



V1
Motivation

How BIG tech plans to feed AI’s voracious appetite for power
As data centers get more energy-hungry, the hyperscalers get more creative

20

Source: Nvidia Blog
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Partitionable / DistributableUnpartitionable

Tasks 1a & 2:  Context for Jaccard Similarity
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V1-21 V1-23 V1-

23/24

V1-

24/25

Hybrid 

CPU+GPU

Stratix 10 

FPGA

CPU-driven 

SHMEM

GPU-driven MPI

GPU-driven 

SHMEM

(NVSHMEM)

Proposed 

CoreTSAR++ 

workload

Web-scale Graph 

Preprocessor & Eval

(V1-26)

CPU-driven 

MPI

Coarse-/Fine- 

grained work 

scheduling Integrate w/ 

partitionable

You are here

HIP-ified

GPU-driven

MPI & SHMEM



Tasks 1a, 1b, 1c, 1d, 2:  Prospective Irregular Workload: SBP

* E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra, P. Monticciolo, A. Reuther, S. Samsi, W. 

Wong, D. Staheli, S. Smith, “Streaming Graph Challenge: Stochastic Block Partition,” Proc. IEEE HPEC, 
2017.

Sp
e

ed

Quality

Louvain

InfoMap

SBP

Enable fast and accurate graph clustering in large graphs by accelerating SBP

Optimal graph clustering is NP-hard →     *

Wanye, Gleyzer, Kao, and Feng. 

MIT Graph Challenge Champion, 2023

Apply to applications 
like network intrusion 
detection

Port SBP to GPU



Task 1b: CoreTSAR: Core Task-Size Adapting Runtime

Original/Master thread Worker threads Parallel region Accelerated region

Ratio: 0.5

500 it

250 it

250 it

1,000 it

500 it

500 it

Pass 1 Pass 2

Static 

Scheduler
Ratio: 0.5



Task 1b: CoreTSAR: Core Task-Size Adapting Runtime
Static vs. Dynamic 

Scheduler

Original/Master thread Worker threads Parallel region Accelerated region

500 it
250 it

250 it

1,000 it

900 it

100 it

Pass 1 Pass 2

500 it

250 it

250 it

1,000 it

500 it

500 it

Pass 1 Pass 2

Static

Dynamic

Argument: 

Ratio=0.5



Task 1b: CoreTSAR: Core Task-Size Adapting Runtime
Dynamic vs. Split 

Scheduler

Split

Original/Master thread Worker threads Parallel region Accelerated regionReschedule

63 it

62 it

113 it

12 it

113 it

12 it

113 it

12 it

500 it
250 it

250 it

1,000 it

900 it

100 it

Pass 1 Pass 2

1,000 it500 it

Dynamic

113 it

12 it

113 it

12 it

113 it

12 it

113 it

12 it

Argument: 

Ratio=0.5



Task 1b: CoreTSAR: Core Task-Size Adapting Runtime

26

Split vs. Quick 

Scheduler

500 it

338 it63 it

62 it 37 it

Dynamic

Quick

500 it
250 it

250 it

1,000 it

900 it

100 it

Pass 1 Pass 2

1,000 it

900 it

100 it

Original/Master thread Worker threads Parallel region Accelerated regionReschedule

Argument: 

Ratio=0.5
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OpenCL

OpenMP 4+

SYCL

Chapel

HIP

Vulkan Compute

std::parallel

▪ Motivation:
▪ OpenDwarfs was a CHREC project to show how to map

13 parallel computational idioms to GPUs via OpenCL
• Part learning tool, part benchmark suite

• Eventually extended to Intel/Altera FPGAs

▪ Now many more paths to portable, heterogeneous computing

▪ To bridge programming gap between high-level, library-driven
heterogeneity, need examples of how to write novel kernels

▪ Approach:
▪ Showcase idiomatic parallel codes using modern portable langs.

▪ Modernize for new classes of devices, and compute modalities
• {unified memory, PGAS, tensor cores, HBM, hybrid co-scheduling, DSPs, edge GPUs, … }

▪ Milestones
1. Update existing OpenCL Dwarfs for modern devices → characterize perf. shifts (0.25)

2. Implement Dwarfs in new lang(s)., analyze perf./prod. () vs. OpenCL (0.5 per lang.)

3. Design partitionable/distributable variants of existing dwarfs (1+)

“Task 2b”: Modernization of OpenDwarfs

27Tasks: Optional (1-2 memberships)

Goal: “Write once, run anywhere”

?

https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032
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