

P2-26: Intelligent Systems

January 13-14, 2026

Dr. Alan George
Mickle Chair Professor of ECE
University of Pittsburgh

Dr. Evan Gretok
Postdoctoral Associate
University of Pittsburgh

Dr. David Langerman
Researcher
University of Pittsburgh

Jefferson Boothe
Ian Peitzsch
Joshua Poravanthattil
Dikchhya Kharel
Graduate Students
University of Pittsburgh

Number of requested memberships ≥ 5

Overview

Goal: Investigate **emerging machine-learning** paradigms and devices for space and other diverse applications

Motivation: AI promises to expand capabilities for edge-system sensing and processing without compromising performance

Challenges: Overcome computational, data, and environmental limitations

Tasks for 2025

T1

ML Model Analysis

- Investigate model scaling for vision transformers
- Improve onboard neural compression pipeline for satellite imagery

T2

Few-Shot Learning for Space

- Investigate cross-domain, few-shot learning for Earth image classification
- Analyze behavior and limitations of few-shot models under domain shift

T3

Hybrid Segmentation and Tracking for Space

- Fuse event-based and RGB data for vision foundation models
- Investigate complementary sensing modalities to enhance model performance

T4

Distributed Training Optimization

- Investigate alternative optimizers on non-traditional distributed compute platforms
- Evaluate accuracy and runtime tradeoffs on different platforms

T1: ML Model Analysis

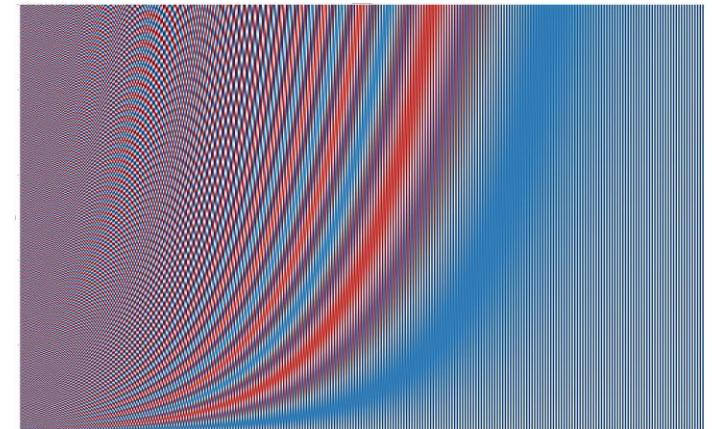
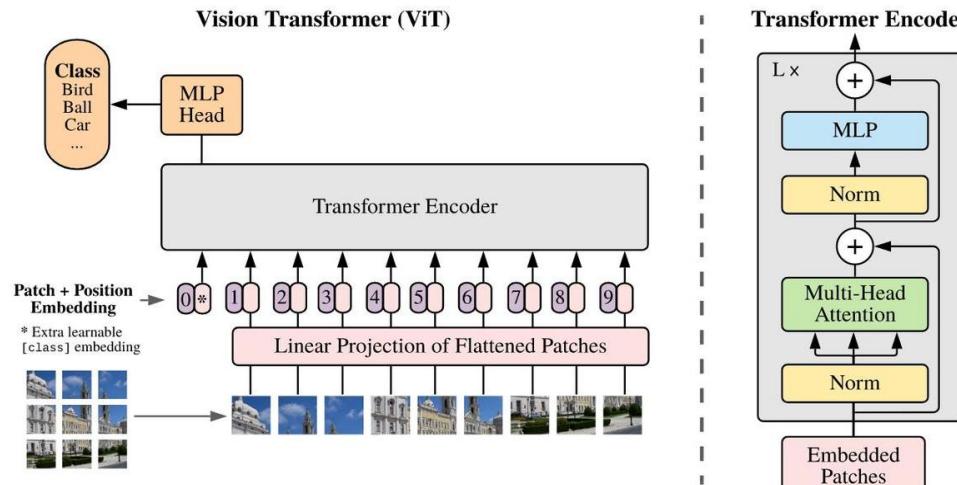
Jefferson Boothe
Ian Peitzsch

jefferson.boothe@pitt.edu, ian.peitzsch@pitt.edu

T1: ML Model Analysis – Background

Neural Compression with Transformers

- **Transformers** have become backbone of state-of-the-art AI systems in many domains
- Information theory shows compression abilities directly relate to **model understanding** of distribution



Analysis of ViTs

- **Flexibility** and **scalability** of ViTs have made them architecture of choice for various tasks
- Understanding how **model structure** impacts performance can enable usage of smaller models

T1: ML Model Analysis – Approach

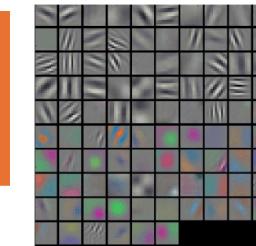
Neural Compression with Transformers – Jeff

- Investigate non-sequential data compression with novel **positional encoding** techniques
- Explore onboard transformer-based neural compression for **satellite imagery**

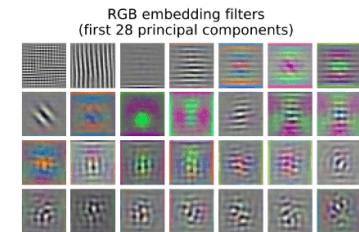
Analysis of ViTs - Ian

- Characterize relationship between **model structure** and **accuracy/loss**
- Analyze **scaling** of training set size

Alexnet 1st conv filters



ViT 1st linear embedding filters



T2: Few-Shot Learning for Space

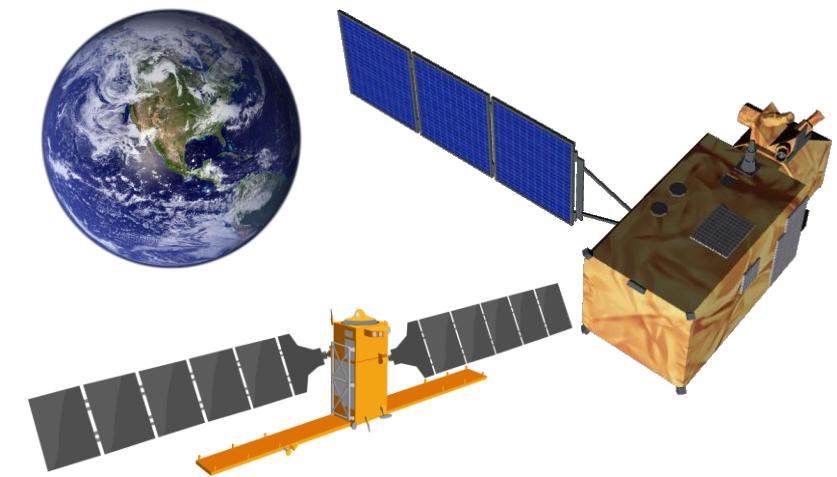
Dikchhya Kharel

Dikchhya.kharel@pitt.edu

T2: Few-Shot Learning for Space – Background

How Can Few-Shot Learning Help in Space?

- Quickly adapt to classifying **new classes** with few samples
- Handle **domain differences** between ground-trained datasets and orbital imagery
 - Ex: Models trained on everyday ground photos learn close-up textures that don't appear in satellite images, so they may struggle to transfer



Why Is Onboard Earth Classification Challenging?

- Space missions often collect **very limited labeled data**, making it difficult to retrain models in orbit
- Models trained on ground datasets may not generalize well without methods that **quickly adapt to new conditions**

T2: Few-Shot Learning for Space – Approach

What is Next for Few-Shot Learning?

- Benchmark few-shot learning algorithms on **cross-domain datasets**
- Compare effectiveness of different **feature extractors**
- Evaluate how **domain shift** impacts few-shot accuracy across various datasets

Train Domain
(Natural)

Test Domain
(Aerial)

Understanding Cross-Domain Behavior

- Analyze **feature differences** across domains to understand FSL transfer behavior
- Identify **algorithm weaknesses** when domain shift is large

T3: Hybrid Segmentation and Tracking for Space

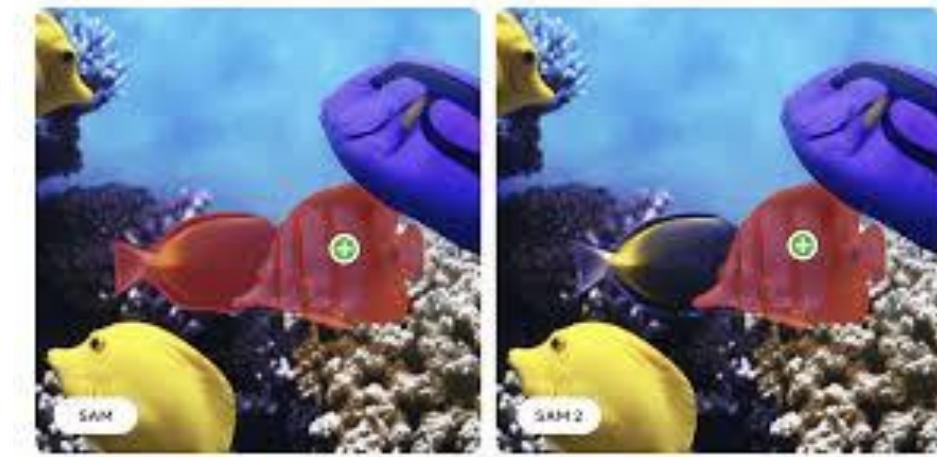
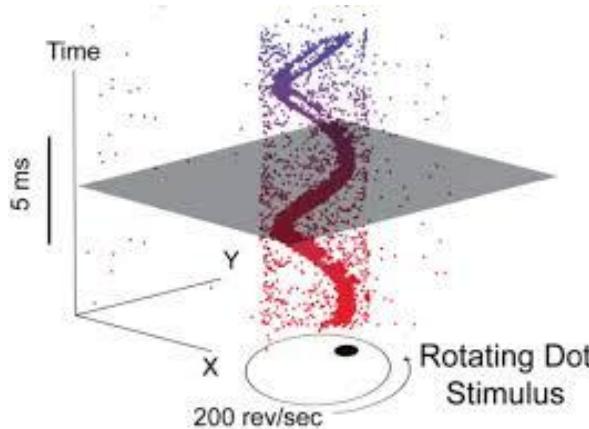
Joshua Poravanhattil

josh.p@pitt.edu

T3: Segmentation and Tracking – Background

SOTA Segmentation & Tracking Models

- Current VFM^s excel at **generalization**, **robust**, and **long-term** segmentation and tracking
- **Strong performance** incentivizes onboard implementations for EO tasks
- Current VFM^s incur excess **computational and energy costs**



Event-Based Sensing Modality

- Event-based sensors offer **asynchronous motion features**
- Low power and high dynamic range allow for **robust data capture**
- Combine with RGB features to enable **enhanced tracking capabilities**

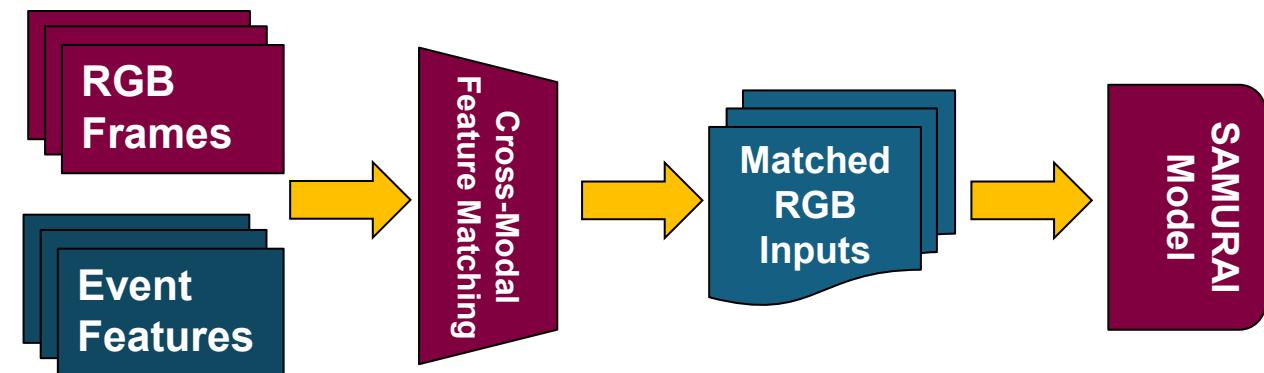
T3: Segmentation and Tracking – Approach

Event-Based Feature Detection and Matching

- Identify **relevant motion features** from event-based modality
- Cross-modal **feature matching** to map event clusters to RGB pixel space
- Filter event noise** for accurately matched RGB and event features

SAMURAI Initialization and Tracking

- SAMURAI offers competitive segmentation and tracking **robust to occlusions**
- Enable object selection and VFM initialization via **matched RGB inputs**
- Assess **tracking performance** of target
- Benchmark performance to reveal **bottlenecks**



T4: Distributed Training Optimization

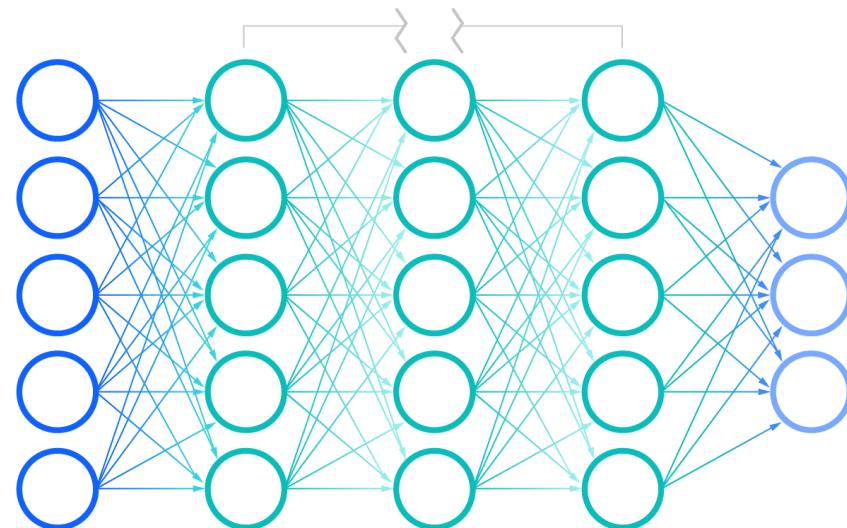
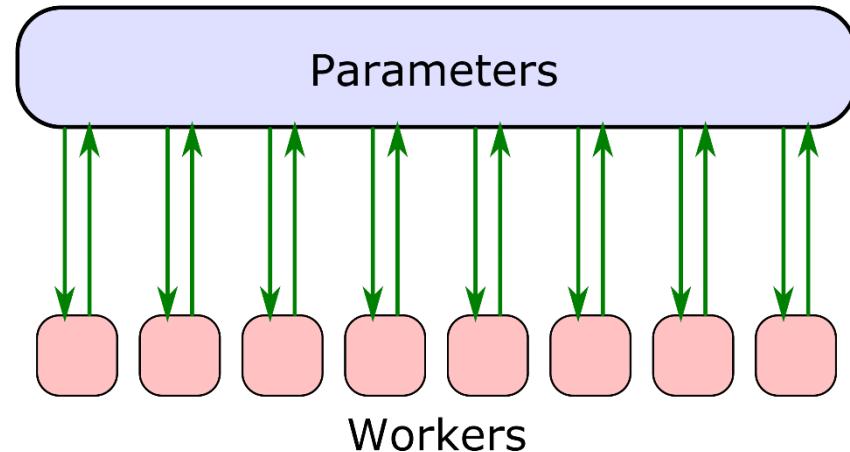
Jefferson Boothe
Ian Peitzsch

jefferson.boothe@pitt.edu, ian.peitzsch@pitt.edu

T4: Training Optimization – Background

Distributed Training

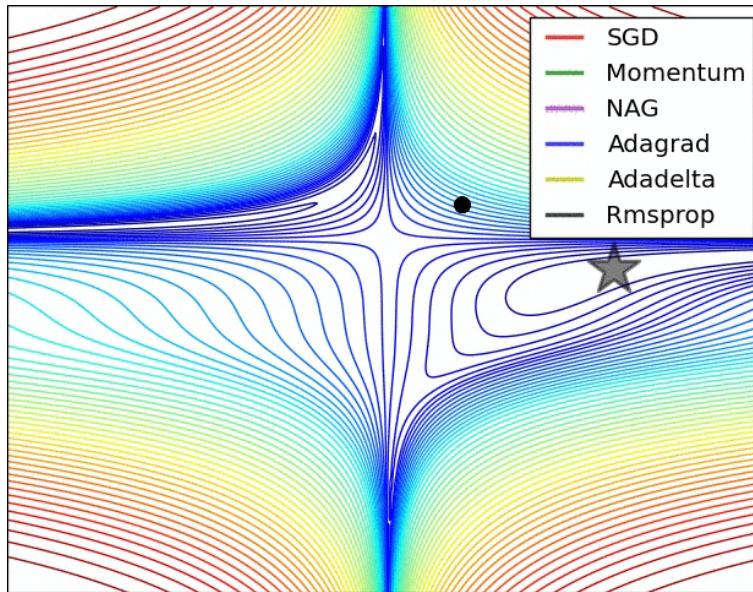
- Data centers remain primary environment to train **large models** but are not always **accessible**
- Training efficiently on other **hardware** and **environments** is desirable for many applications



Optimizers

- **Integral component** of machine-learning training
- Many underresearched methods exist, but **Adam** and **AdamW** remain dominant in field

T4: Training Optimization – Approach



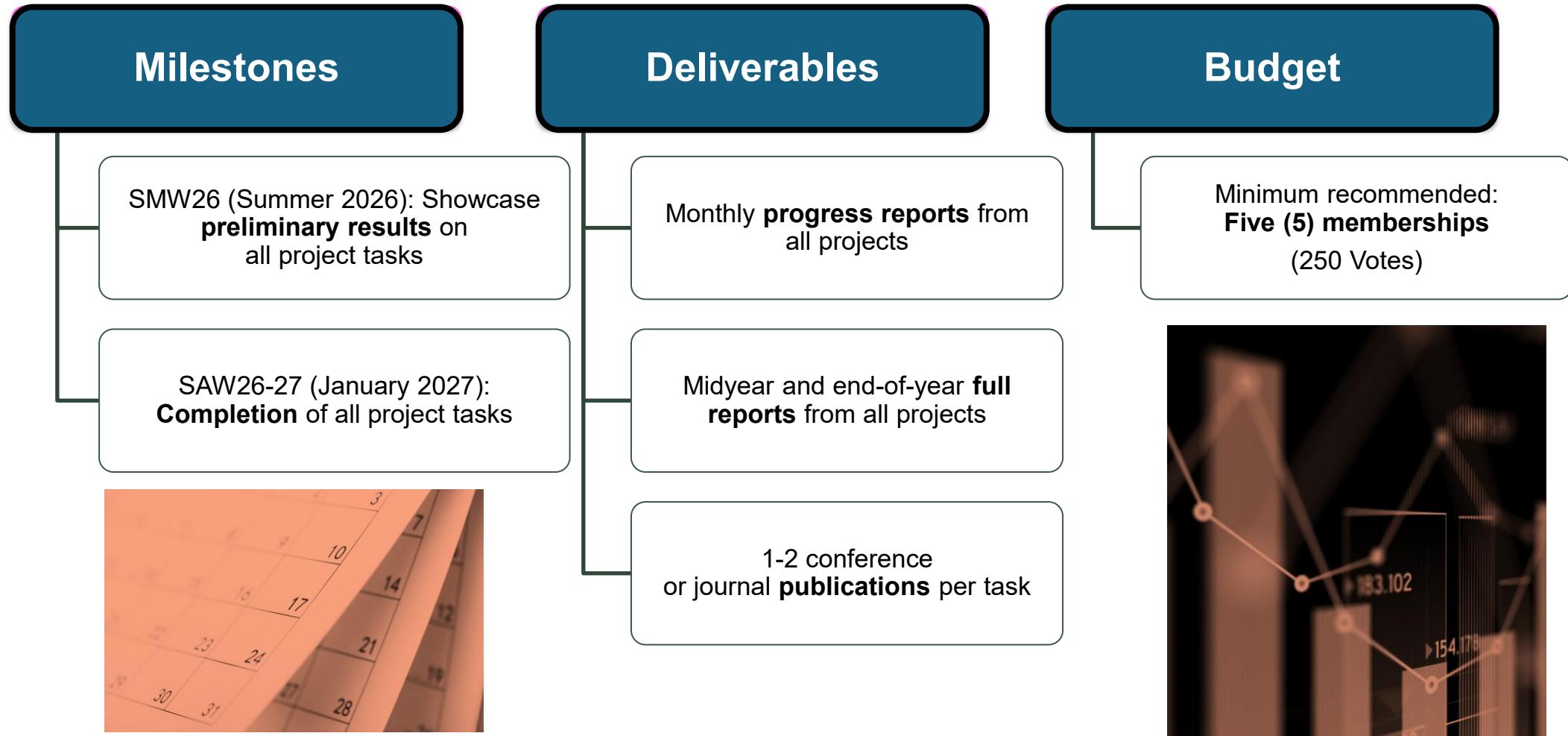
Understanding Optimizer Tradeoffs

- **Evaluate training time** and **accuracy** of different optimizers on various platforms
- Target environments include clusters of **Tenstorrent devices** and edge CPUs

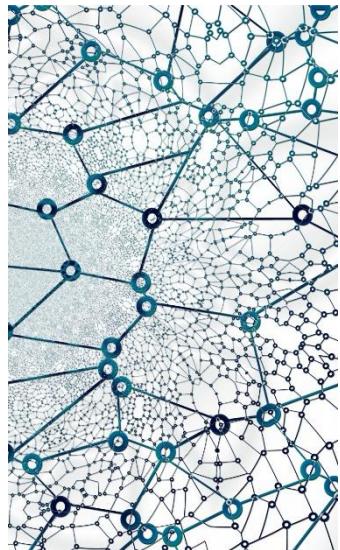
Why Use Other Optimizers?

- Popular optimizers work well on **NVIDIA server-grade** hardware
- Recent research suggests alternatives could **outperform AdamW** on other devices

Milestones, Deliverables, Budget



Conclusions and Member Benefits



Conclusions

- **ML Model Analysis** can increase understanding of model behavior and lead to performance improvements
- **Few-Shot Learning** enables accurate onboard classification with less labelled data and can even generalize its training to never-before-seen samples
- **Hybrid Segmentation and Tracking** aims to exploit complementary data modalities for robust and efficient tracking
- **Distributed Training Optimization** explores performance tradeoffs of alternative optimizers on hardware beyond traditional data centers

Member Benefits

- Direct influence over **architectures and paradigms** studied
- Direct influence over **apps and datasets** studied
- Direct benefit from new **methods, data, code, models, and insights from metrics, benchmarks, and emulations**

