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= Enable high-productivity computing in heterogeneous computing systems:
CPU + {cru, GPU, FPGA, TPU, ...}

= Similar to DARPA High-Productivity Computing Systems program for homogeneous systems
(e.g., Chapel, Fortress, X10) but for heterogeneous systems (e.g., Chapel, SYCL, oneAPI, OpenCL)

= Preferred Vehicle: Modern, Open Standard Languages & Runtime Systems
= Case Studies: Applications and Benchmarks, e.g., Berkeley Dwarfs - OpenDwarfs (@ VT)

Goal

Write ONCE, run ANYWHERE!
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Background & Motivation

= Extend our R&D to create and analyze an ecosystem of high-productivity tools,
environments, and benchmarks for heterogeneous computing
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= Challenges: How to productively ...
= Program an application so it runs on many platforms?
= Evaluate a processor architecture & compare it to others?
= Develop back-end optimizations & know that they will work well? _
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Background: Performance & Productivity (V1-23)

= Sobel Filter on Intel Arria 10, AMD Alveo U250, and NVIDIA RTX 3090

Sobel Filter on

=l 13840 x 2160 Image

Device

Intel Arria 10 (FPGA) AMD Alveo U250 (FPGA) NVIDIA RTX 3090 (GPU) fps: frames
§ per second
Dev Time Dev Time Dev Time
Language SLOC (hrs) fps | SLOC (hrs) fps (hrs)
Verilog 132.6 | 429 305 Not implemented in Verilog Not functional on GPU
OpenCL 85.6 270 50 275 - 141.4 254 — OpenCL & SYCL:
Write once, run
oneAPl - SYCL 21.4 139 20 No support for oneAPI 133.1 135 — anywhere

* Evaluated the same OpenCL kernel written for Arria 10 on U250 without any vendor-specific optimizations

= Rigorous Performance & Productivity Evaluation of Representative Apps
(FFT, Jaccard similarity, biconjugate gradient stabilized method — BICGSTAB, and graph algorithms)

In Different Lang uages on Different Devices (cpus, GPUs, and FPGAs)

GreL & a (Cmmmr

OpenCL oneAPI
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Approach

- Realize a diverse set of application benchmarks
= Regqular vs irregular. Floating point vs integer. CPU- vs memory-intensive. L e

« Characterize the productivity of a heterogeneous system
= Kernel development time (KDT) - wall clock time
= Source Lines Of Code (SLOC), compressed code size (CCS), M
and Code Convergence (CC)

« Characterize the performance-vs-productivity tradeoff
- Performance Portability (P)

= Performance-Productivity Product ( IT) | ; ’”Z""‘,’;’;gﬁm@ ':
- ldentify the best platform and associated ecosystem S 4 —_— =

for productivity, performance, or both (across many apps)

« Enable further high-productivity research: automated co-scheduling at runtime,
performance vs. precision tradeoff Open Source Closed Source
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Proposed Tasks for V1-25 Memberships: -

(Mandatory ), €.9., (2+71)

« Task 1: High-Productivity Computing on GPUs: Irregular Apps (3+4)
= Task la: Graph Algorithms: Jaccard Similarity, Triangle Counting, ...
= Task 1b: Iterative Solvers for Sparse Systems on GPUs
= Task 1c: Portable Kernel Pipelines for GPU-based Edge Devices

« Task 2: High-Productivity Computing on FPGAs (1+1)
= Deep Learning on Versal ACAP Devices (Regular & Irregular)

« Task 3: High-Productivity Heterogeneous Computing: CPU+GPU+FPGA (3+11)
= Task 3a: Simultaneous Co-scheduling of Heterogeneous Devices: CPU+GPU+FPGA
= Task 3b: Heterogeneous PGAS vs MPI+X for Large-Scale Computing
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Task 1a: Graph Algorithms: Jaccard Similarity, A Count

Triangle counting Jaccard similarity

- Motivation: Graph workloads hard to optimize on GPU N 4 1221
= Workload imbalance and irregular memory access patterns 0»"""\,, w @ T
= |nput graph-dependent and GPU architecture-dependent =
. Approach Coarse-grained kernel selection
= Target workloads: Jaccard similarity and triangle counting High avg. Low avg.
- GPU architecture-specific optimizations degree? degree?
G architec P P Edge- Vertex-
= Pattern-matching framework that predicts best set of optimizations centric centric
. : kernel kernel
(based on graph characterization)

 Milestones Fine-grained kernel selection

= Multi-dimensional exploration of performance optimization Denser region: Sparser region:

» Memory subsystems of GPU; parallel algorithm type (edge vs vertex- @@dge-ﬁrﬂg m eriexceene
centric); and thread-launch configuration, both static and dynamic \

= Intelligent GPU kernel selection for a given graph via classification ‘% @ sparser regon @ Denser region:

Edge-centric

(i.e., coarse-grained) and/or regression tree (i.e., fine-grained) kernel kernel

= Intelligent device (and associated ecosystem) selection for Denser region  [EERIRE  Sparserregion | &1 |

. > Compute  ~— - Compute on '
productivity, performance, or both on GPUs CPUS/FPGAS m
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Task 1b: Accelerating Iterative Solvers for Sparse System

« Motivation: A solving, a bottleneck in preconditioned iterative solvers

: . _ = AMDZI1
. . , . Kernel runtime as % of BiCGSTAB solver runtime on AMD MI210 C ~“ T4
91 % Of Iteratlve SOIVer S runtlme Spent On A rocsparse upper triangular solve SYCLrM .. /% Roc m
solves when running preconditioned BICGSTAB oceparee lower angular solve 7 OpenCL [
rocsparse spm )

¢ Ap proa’Ch Ref. implementation: https://github.com/OPM/opm-

. L. simulators/tree/master/opm/simulators/linalg/gpubridge/rocm
1. Domain decomposition I

- Partition matrix into subdomains & drop connections between subdomains
2. Apply triangular solves in parallel to subdomains -

 Milestones

1. Implement optimizations for triangular solves for matrices
with multiple independent subdomains

2. Evaluate impact of domain decomposition on performance
and iteration count of the solver "% Domain e

3. Characterize performance-vs-productivity tradeoff ™ ™% decomposition
* Performance Portability (P) AMDC\ BFEES o
SlalwniN] OpenCL (SYCL.M @Am

sssdse

* Performance-Productivity Product ( IT) oneAP1 )
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https://github.com/OPM/opm-simulators/tree/master/opm/simulators/linalg/gpubridge/rocm
https://github.com/OPM/opm-simulators/tree/master/opm/simulators/linalg/gpubridge/rocm

Task 1c: Portable Kernel Pipelines for GPU Edge Devicem

 Motivation: Edge Computing with GPUs Datacenter Servers

= Bottleneck: Data xfer from edge to datacenter for processing X
= Productivity: Edge devices w/ varying programming APIs
» Route from portable HPC languages to low-power edge devices? Edge Devices

« Approach — ' -
= Move data processing from datacenter to the edge = «»;&} ®
= Leverage portable & open-source HPC standards and toolchains to compute on edge GPU(s)
= Evaluate productivity, performance, perf./prod. (IT), power, and perf./power

= Platforms: Raspberry Pi Compute Module (CM) 5 and Nvidia Jetson Orin Nano
= Workloads: Mixed-radix FFT, FFT convolution, or your workload here

« Milestones
1. Raspberry Pi CM5 via OpenCL C - SPIR-V = Vulkan
2. Nvidia Jetson Orin Nano via OpenCL C - SPIR-V - Vulkan
3. SYCL C++ on either device (via Sylkan or similar) @CLW
4. Nvidia Jetson Orin Nano via OpenCL C - SnuCL-Tr - CUDA

~ NVIDIA.
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https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032
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Task 2: High-Productivity Computmg on FPGAs

Training

Deep Learning on Versal ACAP Devices

« Motivation: HPC for Deep Learning (DL)
= Need fast training & inference, e.g., large language model (LLM),

/THE GENERATIVE INVERSE PROBLEM SOLVER: GIPS |

Deep RL

deep reinforcem’t learning (DRL), generative adversarial net (GAN)

. Approach e ~
Training: LLMs & DRL (optionally, GANs) on GPU or fused CPU+GPU [ - = ]
= Post-Training: VITIS Al & FINN for network optimizat'n (quantizat'n/streaming) [ Dmﬂoﬁmmg ]
= Inference: GPUs - Versal Al SoCs [ Compilation ]
= Metrics: Performance/productivity profiling, i.e., kernel development time, | & VITIS. FINN Yy,
execution time, source lines of code (SLOC), and inference latency. ) 9
= Workloads: Regular (synthetic generation) & irregular (stochastic sampling) [ [ Hardw;.;gic;izaﬂms | )

 Milestones

[ Deployment ]

aU] ‘QNV pue JoQ :924Nn0oS

1. Training & post-training: DRL network (SAC, DDPG), LLM (Llama), GAN [_Performance Profiing |

2. Inference: Vivado+VITIS hardware optimization on GPU & Versal Al SoC| E!. Xiii"“‘}

3. Performance/productivity profiling: KDT, execution time, SLOC, etc. 5 Sii—
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Task 3a: Simultaneous Co-scheduling of Heterogeneity

(CPU+GPU+FPGA) - Details in Appendix

- oot Traditional
i i _ - I ot = E
« Motivation: < 10% use of peak compute capability <= écgsdktg'r?]%l
= Today: Inefficient use of silicon computing, i.e., either CPU or GPUW then GPU one Y

» Physiologically, left & right brain used simultaneously

> Silicon-wise, should use CPU & GPU brain simultaneously (even FPGA)  Simultaneous

co-scheduling —

= Past Work? Our CoreTSAR: Core Task-Size Adapting Runtime, which on CPU & GPU
co-schedules regular apps on CPU+GPU simultaneously via Accel. OpenMP  — eae — .
° ApproaCh W UpenAcc i ‘ time
= CoreTSAR++: Generalize co-scheduling for multi-heterogeneity (CPU+GPU+FPGA)
and across regular & irregular workloads via (SYCL. Triangle counting. saceard simiaity
= Metrics: productivity, performance, perf./prod%) vs. single device ,4}? 1.4
LAY N

 Milestones: CoreTSAR++ Exploration (GvcL. | o | g
] ] ] ] Sparse linear solver = Biconjugate gradient stabilized
1. ldentify & implement appropriate irregular apps to co-schedule 210 0 0y 5
2. Manually implement & evaluate co-scheduled irregular apps Lo “][ ][ b J
3. Automate co-scheduling on heterogeneous system (CPU+GPU+ ...) HESE o o0 7L U \as
4. Investigate simultaneous co-scheduling using (C‘“ via partitioning & muIt| device cobegin{...}

of BYU
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V1
Task 3b: Heterogeneous PGAS vs MPI+X VP

- Motivation | PN S e— Wg@:
= MPI+X dominates distributed heterogeneous computing, S e ‘ | 7
where X € {CUDA, HIP, SYCL, OpenCL, OpenMP, ...} Ly = WI i \\J5>>=
» Issue: Domain scientists must know low-level communication (M P|), Explicit communication & Ianguage interoperability
low-level device programming (X), and interoperability between the two! VS. PGAS
= Alternative? Partitioned Global Address Spaces (PGAS): CPU - GPU — —~a
» Node/device address spaces are logically joined and implicitly communicate 1 E>L.-.-Iig
- Approach . N - g:
= Transform CPU-based PGAS to heterogeneous PGAS, i.e., @“’E“ Single language and implicit communication
= Analyze MPI+X vs PGAS on distributed multi-GPUs w/ real world data
» Metrics: productivity (SLOC, CCS) vs. performance (runtime) vs. perf./prod. (I1) VS. Otrllelg)G,AS
- Port Chapel app(s) to other PGAS :
> one of {OpenSHMEM, HPX, ...} Milestones

. TR TP g 1. Chapel vs MPI+CUDA+OpenMP via partitioned Jaccard similarity
Identlfy limitations to existing . Partitioned Jaccard similarity in OpenSHMEM or HP X
heterogeneous PGAS approaches . Interoperating accelerator-aware comms: {NVSHMEM, GPUDirect, etc.}

2

3

= Propose and develop workarounds 4. A solvers / other linear algebra in any PGAS model vs MPI+X
at scale. i.Q.. hvbrid P(_3A5+X 5. Your workload here in PGAS-of-choice vs MPI+X

1 H versity of Bi-’
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https://github.com/STEllAR-GROUP/hpx

Task 3c: Portable Runtimes for Heterogeneous Task Graphs

« Motivation

Performance: HPC needs device- & system-aware mapping

of kernels, communication, and I/O to hardware

Infrastructure: Hardware migration (translate, remap, retune)

IS a significant cost, which slows mission progress

- Approach openct: (SYCL. OpenMIP

Portability: Leverage portable languages to lower translation cost

Performance: Remap and retune for new hardware.
Alas, $$%.
» Solution: Intelligent heterogeneous tasking system

» Given a portable representation, model & predict tradeoffs
in mapping kernels to different hardware in the system

Case Study

Implement SHREC-related app(s) in OpenMP, OpenARC,
or emerging UniSYCL compiler

Leverage and evaluate the IRIS portable heterogeneous
tasking system’s ability to achieve high performance

v

v

v

v

OpenA MP Application Others (SYCL, Chapel, ...]

High

Low
Level Level

Milestones

1. Migrate a SHREC workload to IRIS runtime &
analyze perf./prod. (IT) (0.5)

2. Evaluate perf./prod. (IT) on typical hetero HPC
(CPU+GPU, homogeneous across nodes) (1)

3. Evaluate perf./prod. (IT) on multi-hetero HPC
(CPU+X, where X differs between nodes) (1)

4. Evaluate perf./prod. (IT) with edge+centralized
hybrid workloads w/ hetero platforms (1.5)

)

Mission-Critical Computing Tasks: Baseline & Optional
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https://iris-programming.github.io/

Goal: “Write once, run anywhere”

- Motivation: Write Once, Run Anywhere Benchmark Suite
OpenDwarfs: NSF CHREC project to create a portable suite of

Task 3d: Modernization of OpenDwarfs

13 parallel computational idioms (Berkeley Dwarfs) via OpenCL

» Portable to CPUs, GPUs, APUs, and eventually Intel/Altera FPGAS gpggfﬂ; 44
> Now many more paths to portable, heterogeneous computing S\F()CL
= To bridge programming gap between portable languages and high-level
) : . : Chapel
library-driven heterogeneity, need examples of how to write novel kernels e
« Approach Vulkan Compute
= Showcase idiomatic parallel codes using modern portable languages std::parallel

= Modernize for new classes of devices and compute modalities ~ (intel")
» Unified memory, PGAS, tensor cores, HBM, hybrid co-scheduling, DSPs, edge GPUs, . -.

« Milestones
1. Update OpenCL OpenDwarfs for modern devices - characterize performance shifts (0.25) -
2. Implement OpenDwarfs in new languages & analyze perf./prod. (I'1) vs. OpenCL (0.50 per lang.) -.
3. Design partitionable/distributable variants of existing dwarfs (1+) |

4

. . $55 University of BYU
: @ Mission-Critical Computing Tasks: Baseline & Optional g Bitshureh ooy
| NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
472N AND RESILIENT COMPUTING (SHREC) (0+2+) 14 N7/ UF
FLORI

IIIIIIIIIIII



https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032

Milestones, Deliverables, and Budget

= Major Milestones (Tasks: T1-T3)

= T1: High-Productivity Computing on GPUs: Irregular Apps

= T2: High-Productivity Computing on FPGAS

= T3: High-Productivity Heterogeneous Computing: CPU+GPU+FPGA

= Deliverables

-
= Software prototypes and artifacts (typically delivered via github) } oy
- Mid-year and end-of-year reports at SHREC workshops. Optionally, more frequently. \( r @
= 2-3 publications at top-tier conference venues or journals ;L( g

- Recommended Budget
= Minimum: 7 memberships (350 votes)
« Maximum: 23 memberships (1150 votes)

ol Un_iversity of BY U
Plttsburgh BRIGHAM YOUNG
NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC) 15 UF
‘ : FLORTA



Conclusion

= Enable high-productivity computing in heterogeneous computing systems:
CPU + {cru, GPU, FPGA, TPU, ...} via open standards: OpenCL, SYCL, Chapel,
and emerging programming models

« Evaluate performance & productivity of representative apps (OpenDwarfs,
FFT, Jaccard similarity, biconjugate gradient stabilized method — BICGSTAB, and
graph algorithms) on different devices (CPUs, GPUs, and FPGAs)

%!w%
AR

| (inteD
il xeon

Member Benefits

= Direct benefit from new methods, tools, datasets, codes, models, and insights
created as well as new metrics of evaluation

= Direct insights from R&D and analysis

3% University of BYU
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