Architectural Analysis of Deep Learning on
Edge Accelerators

Luke Kljucaric, Alex Johnson, Alan D. George
Department of Electrical and Computer Engineering, University of Pittsburgh
NSF Center for Space, High-performance, and Resilient Computing (SHREC)
Pittsburgh, PA, USA
{luke kljucaric, alex.johnson, alan.george} @nsf-shrec.org

Abstract—As computer architectures continue to integrate
application-specific hardware, it is critical to understand the
relative performance of devices for maximum app acceleration.
The goal of benchmarking suites, such as MLPerf for analyzing
machine-learning (ML) hardware performance, is to standardize
a fair comparison of different hardware architectures. However,
there are many apps that are not well represented by these
standards that require different workloads, such as ML models
and datasets, to achieve similar goals. Additionally, many devices
feature hardware optimized for data types other than 32-
bit floating-point numbers, the standard representation defined
by MLPerf. Edge-computing devices often feature app-specific
hardware to offload common operations found in ML apps
from the constrained CPU. This research analyzes multiple low-
power compute architectures that feature ML-specific hardware
on a case study of handwritten Chinese character recognition.
Specifically, AlexNet and a custom version of GoogLeNet are
benchmarked in terms of their streaming latency for optical
character recognition. Considering these models are custom and
not the most widely used, many architectures are not specifically
optimized for them. The performance of these models can stress
devices in different, yet insightful, ways that generalizations
of the performance of other models can be drawn from. The
NVIDIA Jetson AGX Xavier (AGX), Intel Neural Compute Stick
2 (NCS2), and Google Edge TPU architectures are analyzed
with respect to their performance. The design of the AGX and
TPU devices showcased the lowest streaming latency for AlexNet
and GoogLeNet, respectively. Additionally, the tightly-integrated
NCS2 design showed the best generalizability in performance and
efficiency across neural networks.

Index Terms—Machine learning, Inference, Benchmarking,
Accelerator architectures, Low-power

I. INTRODUCTION

Convolutional neural networks (CNNs), along with other
variations of neural networks, are increasingly popular algo-
rithms for machine learning (ML). More specifically, deep
neural networks (DNNSs), or neural networks with more than
one layer, are employed to realize low-latency object classi-
fication due to their limited preprocessing requirements com-
pared to other similar algorithms [1]. This characteristic makes
DNNs attractive for real-time object classification on video
streams where the typical image capture rate of most devices
is 60 Hertz, or about 16 milliseconds per frame. To keep
up with these real-time requirements, hardware acceleration

This research was supported by SHREC industry and agency members and
by the IUCRC Program of the National Science Foundation under Grant No.
CNS-1738783.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

is often necessary due to the large compute complexity of
DNN:ss, typically on the order of giga operations (GOPs) per
inference.

Many emerging devices include hardware for accelerating
ML and artificial intelligence (AI) apps to meet the demands of
this rapidly growing domain. Neural networks fundamentally
consist of many vector and matrix operations, so devices are
designed to compute these operations as fast as other in-
structions. NVIDIA’s Volta, Turing, and Ampere architectures
all feature Tensor cores, which are dedicated hardware to
accelerate these operations, with each generation supporting
more data types and parallelism than the previous [2]. Google’s
TPU architectures are complete accelerator devices designed
specifically for deep-learning (DL) apps [3], which employ
DNNs. These architectures, along with many other accelerator
devices, aid the CPU in offloading the extensive computational
requirements associated with DNNs.

Embedded CPUs are even more constrained than server-
or desktop-class CPUs and therefore could benefit even more
from these ML-oriented accelerators. Many system-on-chip
(SoC) designs integrate ML-specific hardware or feature it as
a coprocessor in the same package to reduce the strain on
the CPU. Embedded CPUs often do not have the compute
or memory resources to reach real-time performance alone,
so these accelerators enable low-power platforms to achieve
real-time performance. Edge-based ML apps’ goals are often
computer vision related, requiring video stream processing.
Many of these apps, like autonomous navigation, are critical
by nature, which makes real-time performance a hard require-
ment, and necessitates hardware acceleration. Therefore, it is
crucial to understand the relative performance of these unique
platforms on DL apps as they emerge.

MLPerf has been a growing industry standard for bench-
marking devices using DNNs [4]. However, not all apps
require the use of the same complex networks and datasets
as defined by MLPerf. Additionally, many devices support
optimizations for data types other than the MLPerf standard
of 32-bit floating-point numbers. Optical character recognition,
applied to Chinese characters, is a task that requires DNNs to
achieve a high accuracy. However, this task does not require
the deeper, more complex networks and larger precision used
for the ImageNet recognition task defined by MLPerf. This
research does not aim to set a standard for benchmarking like

Authorized licensed use limited to: University of Pittsburgh. Downloaded on September 17,2021 at 15:34:54 UTC from IEEE Xplore. Restrictions apply.

MLPerf but does analyze the streaming latency of multiple
embedded architectures on the task of handwritten Chinese
character recognition (HCCR) to build on previous work
defined in [8].

II. BACKGROUND

The architectures, platforms, and frameworks used in this
research vary widely, but serve to illustrate the performance
that each type of device can achieve and build a comparison
between them. This section outlines how these critical pieces
are related and how they fit into the overall scope of this
research.

A. Embedded GPU Accelerators

GPU architectures are widely used in embedded platforms
to offload critical, data-parallel computation, such as graphics
rendering, that would otherwise significantly strain the limited
CPU resources. These GPU architectures are often embedded
into the same chip as CPUs for a more efficient SoC configura-
tion. One of NVIDIA’s latest embedded platforms is the Jetson
AGX Xavier (AGX) featuring the Xavier SoC. The Xavier
SoC features a custom octa-core NVIDIA Carmel ARM-based
CPU that is configured as four dual-core, heterogeneous CPU
clusters. Additionally, a GPU based on NVIDIA’s Volta archi-
tecture, which contains Tensor Cores for accelerating matrix-
multiply-and-accumulate (MMAC) operations, is featured on
the Xavier SoC. Many apps, such as those consisting of
DNN:g, significantly rely on matrix operations. Therefore, these
Tensor Cores are designed to accelerate the common case
(matrix operations). To further improve on DL performance,
the Xavier SoC also features a Deep-Learning Accelerator
(DLA) that is meant to accelerate convolutional layers found
in DNNs [5]. The DLA features two pipelines for additional
throughput of the convolutional operations, which can often
be performed in parallel. The Xavier SoC also features other
accelerators for vision and video-processing apps; however,
they are not critical to the performance of this research.

B. Vision Processing Unit (VPU)

VPUs are a class of processors designed to accelerate
computer-vision apps, which are apps that require a computer
to recognize its environment. Intel’s Neural Compute Stick 2
(NCS2) platform featuring the Movidius Myriad X VPU is
a USB accelerator for low-power, high-performance DL. The
Myriad X SoC combines, on the same chip, SPARC CPU cores
and a variety of accelerators for power-efficient, low-latency
computer-vision apps. The Neural Compute Engine (NCE) is
one such accelerator that is designed with an array of multiply-
accumulate (MAC) blocks to accelerate fundamental neural-
network computations (common case). In addition to the NCE,
16 Streaming Hybrid Architecture Vector Engine (SHAVE)
cores, which are lightweight vector processors, can be used to
accelerate custom neural-network layers. The NCE, SHAVE
cores, and other vision accelerators are connected to the same
intelligent memory architecture. This memory subsystem is
capable of supplying necessary data to processors fast enough

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

to avoid memory bottlenecks often seen in other architectures
when performing neural-network computations [6]. Similar
to the Xavier SoC, the Myriad X SoC also features other
accelerators for vision and video-processing apps.

C. Tensor Processing Unit (TPU)

To expand the idea of accelerating the common case for
neural-network computations, Google designed its cloud TPU
with a large systolic array (128 x 128) of MAC units in
each of its scalar, vector, and matrix units (MXUs). The
details of Google’s Edge TPU are not specified; however, it
is assumed the edge version resembles the cloud versions on
a significantly smaller scale. Depending on the cloud TPU
version, a TPU core can contain one (v2) or two (v3) MXUs.
Both TPU versions v2 and v3 have 2 cores per chip [3].
Coral, a company specializing in Al products, has developed
solutions with Google that feature the Edge TPU processor.
Coral’s Dev Board (TPU-DEV) features the Edge TPU as a
coprocessor together with the NXP i.MX 8M SoC on their
system-on-module (SoM) design. Additionally, Coral offers a
USB accelerator (TPU-USB) that features the same Edge TPU
to serve as a coprocessor for any system [7].

D. Caffe

Caffe is an open-source framework for creating apps using
neural networks developed by Berkeley Al Research. Caffe is
used specifically in this research as an extension to the work
presented in [8] to compare with other accelerators. NVCaffe
is a fork of Caffe that is developed by NVIDIA to efficiently
leverage NVIDIA hardware such as GPUs and Tensor Cores
found in the AGX platform. For more information, the reader
is referred to [9] and [10].

E. TensorFlow

Similar to Caffe, TensorFlow (TF) is another open-source
platform for ML apps developed by Google Brain. TensorFlow
Lite (TFLite) is a lightweight version of TF designed for
inferencing on embedded platforms. For more information, the
reader 1is referred to [11].

FE. OpenVINO

OpenVINO is a toolkit provided by Intel to accelerate apps
using neural networks efficiently on Intel-specific hardware.
OpenVINO takes pretrained models from Caffe, TF, or other
ML frameworks and creates configuration files to run the given
models on the target Intel device. For more information, the
reader is referred to [12].

III. RELATED RESEARCH

This research is an extension of the work presented in [8].
While the previous work looks at the maximum throughput
of high-performance devices, this research studies the same
app with a focus on single-image latency. Embedded devices
are not well suited for maximizing throughput due to their
restricted resources; therefore, single-image latency is more
interesting to examine. Additionally, many ML-based apps
that use embedded platforms focus on video-streaming, which

Authorized licensed use limited to: University of Pittsburgh. Downloaded on September 17,2021 at 15:34:54 UTC from IEEE Xplore. Restrictions apply.

involves processing frames as they become available one after
the other as opposed to multi-image classification.

The models used in this research were originally presented
in [13]. This previous work showed that AlexNet and a custom
version of GoogleNet could classify handwritten Chinese
characters with high accuracies. The AlexNet model is a neural
network with common layers that are featured in most other
neural-network models and can be seen in Fig. 1 [14]. The
GoogLeNet model is a custom variant of Inception v2 that
uses the first 14 layers, as opposed to 22 layers in the original
design. The previous work showed the additional layers were
not necessary as the overall accuracy stops improving for a
significant cost of additional computation. The Inception mod-
ules featured in the GoogleNet architecture result in wider
layers, which recruit more available parallel hardware [15].
The Inception modules featured in the GoogleNet architecture
perform multiple convolutions of varying kernel size at the
same layer, as seen in Fig. 2.

Convolutional
Input 96 kernels, 11x11
stride 4

Fully Connected Layers,
4096 neurons

s
=

Convolutional
96 kernels
5x5

. ” . "
384 kernels 384 kernels 256 kernel
3x3 3x3 3x3

Softmax Layer

NN
N

224x224x3
56x56x96
28x28x96
28x28x96
14x14x384
NN
N
NN

N

14x14x96
N N
nnmiung

14x14x384

N

N

Max Pooling, 2x2

~—_—

Nk
N

N
i

Max Pooling, 2x2

7
7/
(. (- 24 v

Filter Concat

N

N

-
Max Pooling, 2x2

N

RS
N
N

N

Fig. 1. AlexNet Architecture [16]

| Filter Concat |

[ss] [30] [w]

3x3

3x3 | | 3x3 | | 1x1 I

|1x1| |1x1| |Pool| |1X1|

Base

Fig. 2. Naive (Left) Inception v2 (Right) Inception Module Structure [16]

| 1x1 | | 1x1 | |Pool|

The MLPerf Inference Benchmark is an increasingly-
adopted standard for benchmarking neural networks and hard-
ware platforms [4]. While this research does not use the
specific models, datasets, and data types that are outlined
in the MLPerf guidelines, this research adheres to the core
philosophy of the MLPerf benchmark by presenting a fair

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

comparison across models and devices. This research cannot
be compared directly with MLPerf performance results.

Other research has been presented that outlines the current
state-of-the-art for resource-limited ML and general best prac-
tices when creating apps [17] [18] [19]. A similar benchmark-
ing study to this research, albeit on spike-based computing
as opposed to CNN inference, showed that NCS2 performed
significantly worse in terms of latency and efficiency than the
Edge TPU device [20]. Additionally, other research showcases
the performance of the Edge TPU alongside a mobile CPU
and the NVIDIA Jetson Nano [21]. This research showed
that the Maxwell-based GPU, which does not feature ML-
specific hardware, performs significantly worse than the other
devices in the study on Inception v2 using TFLite. Significant
research also has been presented that outlines architectures to
optimize deep-learning performance [22], which supplements
the architectural studies presented in our research.

IV. METHODOLOGY

The goal of this research is to investigate streaming latency
and efficiency of high-performance, low-power accelerators.
The HCCR app is developed using ML-frameworks such as
Caffe, TFLite, and OpenVINO for productivity and optimized
accelerator performance. A C++ version of the app is used
for Caffe and OpenVINO, while a Python version is used
for TFLite. The app uses 252,545 images from the CASIA
database for classification considered in [8] and [13]. The
batch size is limited to one image because streaming apps
process a single frame at a time from a video stream, as-
suming required real-time performance. The average inference
performance is taken after classifying the entire image set
for 50 iterations. All operations are performed using 16-bit
floating-point precision except in the case of the TPU devices,
which only support 8-bit integer precision. Although the data
types are not consistent across all devices, the devices contain
hardware for accelerating operations at the precision used.
Converting all models to 8-bit integer precision may show per-
formance improvements, but it is not necessarily guaranteed.
Executing all models at 32-bit floating-point precision would
show a significant performance impact because device-specific
hardware could no longer be used efficiently.

A. NVIDIA AGX

The original version of the app described in [8] focuses
on the use of Caffe on many different accelerators. Similarly,
NVCaffe is used on the AGX platform to benchmark the
Xavier SoC. The Carmel CPU featured on the Xavier SoC
is benchmarked using Caffe as a baseline, non-accelerator
performance metric.

B. Coral Google Edge TPU

The Edge TPUs support only TFLite models. The Caffe
models are manually converted to TFLite to benchmark both
TPU platforms. In the event that a layer cannot be executed
on the TPU, the app falls back to the CPU for computation
before restoring execution on the TPU. The performance of

Authorized licensed use limited to: University of Pittsburgh. Downloaded on September 17,2021 at 15:34:54 UTC from IEEE Xplore. Restrictions apply.

>
o
-8’
103 - 2 3
- W8 =3
e B E -
Q — I~ LQ
2 107~ 5 B
= : N
~ - = { g
i IR
= S ?
2 10! Z
- o~ «
100 . L L |:| |:|
N ¢! o 2 N
Cﬁ&@ eﬂ»'Pé “Z&\]@ Q S /\33?’ S o
R XO\P» §I\Qo{‘ ?Q‘I‘ < <
S
| B AlexNet 10 GooglLeNet

Fig. 3. HCCR Streaming Latency Across Devices and Models

the Arm Cortex-A53 CPU featured on the Coral Dev Board is
benchmarked using the same TFLite version of the app for a
baseline performance on another low-power CPU. The Caffe
models are converted to the TFLite format and quantized to
8-bit integer types. The USB accelerator connects to a system
featuring an Intel Core i17-7700 running at 3.6 GHz with 16GB
of 2400 MHz DDR4 main memory.

C. Intel NCS2

Similar to the TPU, The Intel NCS2’s programmabilty is
limited to the use of Intel’s OpenVINO toolkit. The original
Caffe models are converted using the OpenVINO model
optimizer, which both converts the models and creates configu-
ration files for proper mapping on the target device. The NCS2
is connected to the same system as the TPU USB accelerator.

V. RESULTS

The main performance metric is the latency of single-image
classification. Fig. 3 displays the streaming latency, or the
latency of the neural networks with a batch size of one image,
across all devices. Smaller latency values are preferred.

A. Design Power

Table I lists the expected power consumption of each
device as thermal design power (TDP). The dynamic power
consumption for the app on each accelerator is not easily
measurable, especially on SoC platforms. We assume the
peak power potential in most cases. For the NCS2 and TPU,
the TDP is explicitly given. For the AGX platform’s 30W
power mode, each core of the Carmel processor uses up to a
maximum 1.5W of power. Assuming this is the case, the the

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

GPU and DLA on the SoC can be roughly estimated to be
using 18W, which is a better estimate than the full 30W. For
the NXP i.MX 8M platform featuring the ARM Cortex-AS53,
we used a power benchmark of relatively similar floating-point
computations.

TABLE I

TDP OF DEVICES
Device TDP (W)
NVIDIA Carmel CPU 12.00 [5]
ARM Cortex-A53 CPU 1.25 [23]
NVIDIA AGX Xavier GPU + DLA 18.00 [5]
Intel NCS2 (Myriad X) 1.50 [24]
Google Edge TPU 2.00 [7]

~ B. Efficiency

Efficiency is described in terms of throughput-per-power, as
opposed to latency-per-power. Therefore, we use the reciprocal
of latency as the throughput in terms of images-per-second.
This throughput metric is still limited to one image per batch
to calculate the streaming efficiency in terms of images-
per-second-per-Watt. With our power assumptions, efficiency
would increase as the batch sizes are increased. The batch
sizes were scaled up until the devices exhausted main memory
to get a sense of how much additional parallel hardware is
available. The TPU devices are limited to one image per batch.
All other devices were limited (< 1.5x) in relative improved
performance at larger batch sizes besides the AGX platform,
which saw a throughput increase of 16.3x and 18.6x for
AlexNet and GoogLeNet, respectively. Efficiency metrics for
each device can be seen in Fig.4. Larger efficiency values are
preferred.

VI. DISCUSSION

The performance of the devices on various models depends
on the devices’ architectural design. This sections analyzes
why the performance of the models are impacted by differ-
ent architectures. Investigation into the efficiency of devices
related to architecture is also discussed.

A. Accuracy

The accuracies for each model over each iteration were
recorded to verify the models’ performance. These accuracies
are not critical to the nature of this research. However, the
average Top-1 accuracies for AlexNet and GoogLeNet across
devices that use 16-bit floating-point precision were 94.9%
and 96.6%, respectively. The average Top-1 accuracies for
AlexNet and Googl.eNet across TPU devices were 90.3% and
93.8%, respectively. This reduction in accuracy is expected
and consistent with [25] and [26] for quantization and reduced
precision of DNNs. The size of parameters needed for the
AlexNet model is 5.8x and 4.6x larger than the GooglLeNet
model for Caffe and TFLite, respectively.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on September 17,2021 at 15:34:54 UTC from IEEE Xplore. Restrictions apply.

2
o
B
g 150 -
3
é" 100 3
= r~
= 3
Q
-§ 0 l © @ - 5 2
2 KBS 83 I 20| =
Eﬁ ©S QP 0 -
0 —= =m0 mm— Nl | mml
& W o S P Qﬁq
O g T T O
\Ox?» §I\Qo‘ NE Y
AN
| I8 AlexNet 10 GooglLeNet

Fig. 4. HCCR Streaming Efficiency Across Devices and Models

B. Performance

Comparing the performance of the CPU baselines, we ob-
serve that the Carmel’s performance is significantly lower than
the A53’s performance. The A53 processors are designed for
maximizing efficiency, so the Carmel processor should display
better performance given the same app [27]. The reason for
the performance disparity is because of the use of Caffe on
the Carmel CPU versus TFLite on the A53 CPU. TFLite
is specifically designed for devices with limited compute,
memory, and power resources and is therefore more optimized
for embedded platforms than Caffe. AlexNet’s performance on
both platforms is significantly worse than GoogLeNet’s due to
its larger model size, resulting in a memory-bottleneck.

In the case of GoogLeNet, all of the accelerator architectures
perform within the same order of magnitude, besides the
AGX. Conversely, the AGX shows the best performance out
of all devices in the case of AlexNet. Based on both of
these results, we can infer that the top AlexNet performance
is most likely due to the dual-DLA pipeline. If the DLA
pipeline was utilized in both models, the GoogLeNet model’s
performance would suffer due to the parallel nature of the
Inception modules requiring more than two pipelines for con-
volution acceleration, which is what we observe. The NCS2
does not have a specific convolutional accelerator similar to
the DLA. However, the tightly-coupled NCE, SHAVE cores,
and memory fabric can achieve similar functionality at a
slightly degraded performance. The TPU accelerator performs
significantly worse than the other accelerators on AlexNet.
Since the TPU is a coprocessor and not embedded into the
SoC similar to the other devices, memory accesses incur much
larger penalties without the main memory residing on-chip.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

The AlexNet case makes this design characteristic apparent
because of its significantly larger model size, requiring the
accelerator to continuously wait for off-chip data.

The best performance observed out of all devices comes
from the TPU accelerator on the GoogleNet model. More
specifically, the USB accelerator variant performs better than
the Dev Board variant. This is mostly likely due to the larger
system memory and higher-performance CPU, although the
communication latency to those systems is longer over USB.
The details of the TPU architecture are not publicly available.
However, the featured MXU would enable the TPU to process
the GoogLeNet Inception modules in parallel, enabling much
higher performance at each layer. Because of the reduced
GoogLeNet model size, a layer could be computed without
needing to go to main memory multiple times. Additionally,
memory latencies could be hidden while computing a previous
layer. The TPU, most likely, needs to fetch multiple data
partitions for a single layer of the AlexNet model, which
results in the observed performance. An important caveat
with this result is that inference was performed at a reduced
precision with a quantized model, significantly reducing the
complexity of the app. The TPU devices fail on this task at 16-
bit floating-point precision because it does not have hardware
to support that precision.

While the NCS2 does not perform the best in either case,
it does perform the best in the average case across models
meaning its performance generalizes well to the contrasting
models architectures. The NCS2’s design is specific to neural-
network performance without the massive parallelism most
likely found in the TPU. However, its memory, processor,
and accelerator subsystems are significantly more integrated,
similar to the AGX. This specific architecture enables the
NCS2 to perform well on both models, not optimizing for one
over the other. No device achieves the real-time performance
required for both networks; however, the NCS2 is the only
device that achieves real-time performance in the average
case showcasing good performance on both networks instead
of just one. The NCS2 only achieves real-time performance
on GoogLeNet, while only slightly missing the performance
requirement for AlexNet.

C. Efficiency

The efficiency metrics are difficult to discuss without exact
numbers to support the performance achieved. However, in
low-power apps, it is critical to discuss the efficiency of the
devices studied. The Carmel CPU suffers in efficiency due to
it being the worst performing device. In contrast, the A53
CPU’s low-power characteristics make it competitive with
the AGX GPU and DLA due to the AGX platform having
the highest power consumption characteristics. As mentioned
before, the AGX platform’s throughput scales significantly
higher than the rest of the devices when increasing the number
of images per batch, using more parallel hardware. Therefore,
the actual power consumption for the streaming latency would
be significantly lower than what is noted for the AGX GPU.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on September 17,2021 at 15:34:54 UTC from IEEE Xplore. Restrictions apply.

However, this scaled throughput does not apply in the case of
video-streaming apps.

The NCS2 and TPU accelerators both feature similar low-
power profiles, with the NCS2 being slightly lower power. The
TPUs both showcase the best GoogleNet efficiency, with the
USB Accelerator being more efficient, due to the significantly
lower latency than the NCS2. However, the NCS2 displays
the best AlexNet efficiency due to its competitive, low-latency
performance at a lower power than both the TPU and AGX.
The TPU accelerators prove to be the best in the average
case, although with a much higher standard deviation than
any of the other platforms. The significance of this large
standard deviation is that the TPU has poor generalization
characteristics. The TPU performs well on models with a small
number of parameters but struggles significantly on models
with a larger number of parameters. This consideration is in
contrast to the high generalizability of the Intel NCS2 that
shows consistent efficiency across both model types.

VII. CONCLUSIONS

While this research cannot be compared to a standard
benchmark like MLPerf, which restricts the data, models,
and data types used and is not representative of all ML
apps, many insights can be drawn from this case study.
TFLite displays significantly better performance than Caffe
for memory-, compute-, and power-constrained platforms like
ARM CPUs. There was no single accelerator that performed
the best in every case or achieved real-time performance for
both neural networks. The AGX’s massively parallel archi-
tecture enabled it to perform the best on the larger-memory
AlexNet model. The TPU architecture, optimized for neural-
network computations, enabled it to perform the best on the
smaller-memory GoogLeNet model, avoiding costly memory-
access penalties. Additionally, the NCS2 displayed the best
average performance across both models because of its tightly-
coupled, ML-focused architecture, showcasing its strong gen-
eralization characteristics. While the efficiency characteristics
of the devices cannot be precisely evaluated, the TPU devices
proved to be the most efficient on the GoogLeNet model and in
the average case despite having the largest standard deviation.
As many different architectures, especially those designed for
ML and Al keep evolving, it is crucial to understand their
relative performance to leverage optimal hardware for critical

apps.
VIII. FUTURE WORK

One future direction for this research would be to standard-
ize all of the frameworks and data types used. Caffe is used
predominantly as an extension of previous work, so moving
all devices over to 8-bit integer precision, TFLite models
would standardize this evaluation. All software methods used
in this research were optimized for their respective hardware
platforms, besides the case of the CPUs. Additionally, more
models, such as MobileNet and ResNet, can be included for a
closer representation of the MLPerf suite. Many other devices
and platforms will be studied as they become available.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

[1]

[2]

[3]

[4]

[5]

(6]

(7]

[8]

[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

REFERENCES

M. Egmont-Petersen, D. de Ridder, H. Handels, “Image processing with
neural networks - a review,” Pattern Recognition, vol. 35, no. 10, pp.
2279-2301, 2002.

NVIDIA, “NVIDIA A100 Tensor Core GPU Architecture,” June
2020. [Whitepaper] Available: https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
[Accessed June 2020]

Google LLC, “System Architecture,” June 2020. [Datasheet] Avail-
able: https://cloud.google.com/tpu/docs/system-architecture [Accessed
June 2020]

P. Mattson, H. Tang, Et. Al, “MLPerf: An Industry Standard Benchmark
Suite for Machine Learning Performance,” 2020 IEEE Micro, vol. 40,
no. 2, pp. 8-16, February 2020. DOI: 10.1109/MM.2020.2974843

D. Franklin (NVIDIA), “Jetson AGX Xavier and the New Era of
Autonomous Machines Webinar,” June 2020. [Presentation] Available:
https://info.nvidia.com/jetson-xavier-and-the-new-era-of-autonomous-
machines-reg-page.html [Accessed June 2020]

Intel, “Intel® Movidius™ Myriad™ X VPUs,” June 2020. [Datasheet]
Available: https://www.intel.com/content/www/us/en/artificial-
intelligence/movidius-myriad-vpus.html [Accessed June 2020].

Google LLC, “Coral Dev Board Datasheet Version 1.3, Jan-
uary 2020. [Datasheet] Available: https://coral.ai/static/files/Coral-Dev-
Board-datasheet.pdf [Accessed June 2020].

L. Kljucaric, A. George, “Deep-Learning Inferencing with High-
Performance Hardware Accelerators,” 2019 IEEE High Perfor-
mance Extreme Computing Conference. September 2019. DOI:
10.1109/HPEC.2019.8916463

Y. Jia, E. Shelhamer, Et. Al, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” in 22nd ACM international conference on
Multimedia MM, 2014.

NVIDIA, “NVCaffe,” January 2020. |Technical ~ Manual]
Available: https://docs.nvidia.com/deeplearning/frameworks/caffe-
user-guide/index.html [Accessed June 2020].

M. Abadi, A. Agarwal, Et. Al, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015. [Software] Available:
https://www.tensorflow.org/ [Accessed June 2020].

Intel. “OpenVINO Toolkit,” June 2020. [Technical Manual] Available:
https://docs.openvinotoolkit.org/ [Accessed June 2020].

Z. Zhong, L. Jin, Z. Xie, “High Performance Offline Handwritten
Chinese Character Recognition Using GoogLeNet and Directional Fea-
ture Maps,” 13th International Conference on Document Analysis and
Recognition. 2015.

A. Krizhevsky, L. Sutskever, G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” Neural Information Processing
Systems, vol. 25, no. 2, 2012. DOI: 10.5555/2999134.2999257

C. Szegedy, W. Liu, Et. Al, “Going Deeper With Convolutions,” in
IEEE Computer Vision and Pattern Recognition (CVPR), 2015. DOI:
10.1109/CVPR.2015.7298594

L. Tsochatzidis, L. Costaridou, and I. Pratikakis, “Deep Learning for
Breast Cancer Diagnosis from Mammograms—A Comparative Study,”
in The Journal of Imaging, vol. 5, no. 37, 2019. DOI: 10.3390/jimag-
ing5030037

A. Sobecki, J. Szymanski, Et. Al, “Deep Learning in the Fog.” in
International Journal of Distributed Sensor Networks, August 2019.
DOI:10.1177/1550147719867072.

S. Pouyanfar, S. Sadiq, Et. Al, “A Survey on Deep Learning: Algorithms,
Techniques, and Applications,” in ACM Computing Surveys, Article 92,
January 2019. DOI:https://doi-org.pitt.idm.oclc.org/10.1145/3234150
N. D. Lane, S. Bhattacharya, Et. Al, “An Early Resource Character-
ization of Deep Learning on Wearables, Smartphones and Internet-
of-Things Devices,” in Proceedings of the 2015 International Work-
shop on Internet of Things towards Applications (IoT-App ’15).
Association for Computing Machinery, pp. 7-12. DOI: https://doi-
org.pitt.idm.oclc.org/10.1145/2820975.2820980

J. Sengupta, R. Kubendran, Et. Al, “High-Speed, Real-Time, Spike-
Based Object Tracking and Path Prediction on Google Edge TPU,”
in 2nd IEEE International Conference on Artificial Intelligence Cir-
cuits and Systems (AICAS), Genova, Italy, 2020, pp. 134-135, doi:
10.1109/AICAS48895.2020.9073867

Z. Hu, A. B. Tarakji, Et. Al, “DeepHome: Distributed Inference
with Heterogeneous Devices in the Edge,” in The 3rd International
Workshop on Deep Learning for Mobile Systems and Applications

Authorized licensed use limited to: University of Pittsburgh. Downloaded on September 17,2021 at 15:34:54 UTC from IEEE Xplore. Restrictions apply.

(EMDL °19). Association for Computing Machinery, pp. 13-18.
DOTI:https://doi.org/10.1145/3325413.3329787

[22] N. D. Lane, S. Bhattacharya, Et. Al, "Squeezing Deep Learning into
Mobile and Embedded Devices,” in IEEE Pervasive Computing, vol.
16, no. 3, pp. 82-88, 2017, doi: 10.1109/MPRV.2017.2940968

[23] NXP Semiconductors, “i.MX 8M Quad Power Consumption Mea-
surement Rev. 2" August 2018. [Application Note] Available:
https://www.nxp.com/docs/en/nxp/application-notes/AN12118.pdf [Ac-
cessed June 2020].

[24] M. Antonini, T. Huy Vu, Et. Al, “Resource Characterisation of Personal-
Scale Sensing Models on Edge Accelerators,” The First International
Workshop on Challenges in Artificial Intelligence and Machine Learning
for Internet of Things. Association for Computing Machinery, pp. 49-55.
November 2019. DOI: https://doi.org/10.1145/3363347.3363363

[25] N. Wang, J. Cho, Et. Al, “Training Deep Neural Networks
with 8-bit Floating Point Numbers,” in The Conference on
Neural Information Processing Systems (NIPS). 2018. Available:
https://papers.nips.cc/paper/7994-training-deep-neural-networks-with-8-
bit-floating-point-numbers.pdf [Accessed June 2020].

[26] P.Judd, J. Albericio, Et. Al, “Reduced-Precision Strategies for Bounded
Memory in Deep Neural Nets,” CoRR, vol. abs/1511.05236, 2015. [On-
line]. Available: http://arxiv.org/abs/1511.05236 [Accessed June 2020]

[27] ARM. “ARM Cortex-A53 MPCore Processor Technical
Reference Manual,” June 2020. [Technical Manual] Available:
https://developer.arm.com/docs/ddi0500/g [Accessed June 2020].

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Pittsburgh. Downloaded on September 17,2021 at 15:34:54 UTC from IEEE Xplore. Restrictions apply.

