Discovering Reusable Hardware Designs Using
Birthmarking Techniques

Kevin Zeng
Bradley Department of
Electrical and Computer Engineering
Virginia Tech
Blacksburg, VA
Email: kaiwen@vt.edu

Abstract—With decades of investments, standardized hardware
design practices have not taken root. Productivity has continued
to be a major issue for many designers. One of the most
important factors in improving productivity is design reuse,
which current tools have done little to address. Reusing designs
involve manually searching through repositories to find a design
that meets the requirements of a project. This search can be
very tedious and often unfruitful. In order to promote design
reuse, an automated discovery technique is proposed: a reference
circuit is compared with an archive of existing designs such
that similar circuits are suggested throughout the design phase;
however, most circuit comparison techniques are focused on exact
matches. In this paper, a method of comparing the similarity
of circuits using a birthmarking technique is presented. The
birthmarking technique captures a wide range of features includ-
ing structural characteristics, such as components and nets, and
functional characteristics, such as dataflow, into a single compact
representation. Experiments and evaluations of the birthmarking
technique were performed on over 150 circuits from various
sources in order to show the feasibility of the proposed methods.
Results show that using birthmarks to compare the similarity of
circuits is promising.

I. INTRODUCTION

It is highly possible that most of the components that are
commonly used in digital logic have already been designed
in one form or another. If the designs can be reused, there
is no need to needlessly reinvent the components again. Time
spent during the redesign can be allocated to more important
tasks of the design phase. The very reason domain-specific
software libraries exist and have been extremely successful is
to provide the user with a set of commonly used functions that
can be imported and used immediately, increasing the overall
productivity of the designer. In terms of reusable designs,
it is assumed that they have an underlying expectation of
functional correctness. This means that reusable designs have
been tested and are expected to function correctly as is. Due
to the underlying expectation of functional correctness for
reusable designs, most of the simulation and verification of
the circuit is eliminated. All that is left is the integration

This work was supported in part by the /UCRC Program of the National
Science Foundation within the NSF Center for High-Performance Reconfig-
urable Computing (CHREC), Grant No. ITP-0804155.

Peter Athanas
Bradley Department of
Electrical and Computer Engineering
Virginia Tech
Blacksburg, VA
Email: athanas@vt.edu

of the component into the overall design. Table I shows
the overall cost breakdown of a typical reference design for
military applications [1]. The simulation, verification, and
implementation phase of a design takes up the largest portion
of the design phase which reusing designs can help greatly
alleviate. Therefore, reusing instead of reinventing is one
factor that can lead to a significant increase in productivity
of designing hardware.

In spite of these benefits, the reuse of past designs has not
gained significant traction in the hardware community. Even
if reuse is seen in practice, limitations such as knowledge of
the components in the library, inconsistent documentations,
and the search for the similar components hinder the full
potential of reuse. Vendors have come a long way in terms
of increasing productivity by providing powerful tools for
synthesis, debug and simulation, and placement and routing [1]
[2]. High-level synthesis (HLS) and programming languages,
such as OpenCL, allow users to write their own accelerator
with the underlying details of the hardware abstracted away.
Nonetheless, these tools have done little to incorporate design
reuse into the design methodology. Many tools allow the
import of third-party Intellectual Property (IP) cores into the
core library through which they can be searched, but that is
the extent of reuse seen in most vendor tools.

Though the contemporary tools simplifies reuse to an extent
for the users, they still have many drawbacks. Users have to
import specific IP cores they want to reuse. This would first en-
tail the search across various sources for existing components
that fits the requirements of the design as well as the necessary
documentation behind the IP. Reusable hardware libraries or
components themselves are not as prevalent either, making
the search for relevant IPs difficult. Hardware repositories can

TABLE I
COST OF A TYPICAL REFERENCE DESIGN FOR FPGA
Development Hours
Architectural Design 1886.9
Detailed Design 4745.1
Simulation, Verification, and Implementation | 5376.3
Place and Route 1809.2

Traditional Reuse Flow Proposed Reuse Flow

Design @ Design
Scope Scope

Circuit Design

ﬁ Circuit Design

Circuit
Comparator

[]
Wants to find
existing circuit

Search various
sources

Design Found?

Circuit
Database

F————————— = — — — — — — — 5

Integrate /
Return to design

Correct Spec?

Yes

Integrate /
Return to design

Fig. 1. Comparison between the proposed flow and the traditional flow for
reusing designs

often be incomplete and disorganized. A complete and private
library within an organization can have certain limitations
as the users need to familiarize themselves with what the
database contains. If there exists a tool where the candidate
cores from a given database are automatically suggested to the
user throughout the design phase, then designers will be more
open in accepting and reusing components. By extension, if
the above assertion is true, the design is transformed into a
discovery process.

Figure 1 displays the high-level concept of the proposed
model. As the user makes changes to a reference circuit,
the proposed tool will continuously monitor the circuit dur-
ing the entry process. A vast number of comparisons are
performed between the emerging design and an archive of
existing designs. If there exists a proper community structure
of easing contributions and automating access, the number
of existing designs can rapidly rise to tens of thousands.
Candidate circuits are then suggested to the user within the
design environment in an unobtrusive manner. The results are
ranked based on similarity such that most relevant information
is presented to the user first. The tool can then suggest
additional similar circuits, display relevant documentation on
the design, or import the existing circuit into the design for
the user to use. Automatic integration of the existing design
to the current can be a potential feature as well.

Traditional reuse flow requires the user to manually search
for designs they want to reuse which can be very time
consuming and often leads to many dead ends. The proposed

flow takes away the manual search the user has to perform.
In addition, because the idea of reuse is integrated within the
design environment, the designer can remain in the scope of
the project and as a result, remain focused on the design and
task at hand. By automatically suggesting existing designs to
the user, design reuse becomes more appealing, requiring little
to no effort from the user.

In order to predict relevant designs the user may want
reuse, comparisons between a reference circuit and a database
of circuits need to be performed. Much of the research for
comparing circuits is to find exact matches by using graph-
based approaches to compare the netlist of two circuits [3] [4];
however, these methods usually only consider the structural
aspects of the circuits and neglect the functional aspects. Struc-
turally different circuits can be functionally equivalent. The
data width can also be an issue. As the data width increases,
the structure of the circuit gets more complex even though the
overall functional remains the same. Functional comparison
of circuits have been focused on combinational equivalence
checking (CEC) to determine if two circuits exhibit the same
behavior. Several techniques are commonly used for CEC
such as binary decision diagrams (BDDs), or satisfiability
solvers (SAT). Still, these approaches have limitations such
as input variable ordering and input output correspondence
between two designs. These approaches also focus on finding
an exact functional match since the goal of these approaches
is correctness and verification.

In this paper, a new methodology for comparing the similar-
ity of two digital circuit using a birthmarking approach is pro-
posed. A birthmark is defined by the inherent characteristics
of a circuit. The birthmark is constructed so that the structural
and functional information of the circuit are accounted for. The
interest in comparing circuits is not to find an exact match,
but a metric that indicates both the structural and functional
similarities between two circuits. In order to validate the
proposed birthmarking method, an assessment is performed on
the quality of the results returned when comparing a reference
circuit against a compiled database of open-source IP cores
from various archives.

II. RELATED WORK

In terms of circuit comparison, there has been little work
done in determining the similarity between two circuits. Shi et
al [5] used a modified version of an iterative graph similarity
algorithm to find similar nodes in a reference and modified
design in order to improve placement on FPGAs. The approach
focused on the similarity between each of the nodes rather
than the overall design. InVerS [6] determines a similarity
factor between two netlists based on signatures of the nets
obtained using a fast simulation technique. Since InVerS can
characterize equivalent circuits as dissimilar, this technique is
focused more as an incremental verification method.

Most of the applications regarding circuit comparison re-
quires the search for an exact match both structurally or
functionally. Technology mapping of primitive components
requires an exact subgraph match such that the subgraph

Reference

Design
Circuit
Database

AST Extraction
]

Birthmark Extraction
Birthmark
Extraction Functional || Structural || Constant
I I Ranked
— 9 Results
Birthmark Comparator l l
Preprocessed Sequence Euclidean
Database Alignment Distance

' '

[Calculate Similarity Score

l_

Fig. 2. Block diagram of overall system flow

is replaced with a library primitive. Layout vs Schematic
(LVS) checking looks at the circuit’s layout and schematic
to make sure the two representations are an exact match.
Subgemini [4] is a tool that uses subgraph isomorphism
techniques to find subcircuits within larger circuits. Whitam
et al [3] found similar designs in a circuit repository using
a subgraph isomorphism technique. Their approach is similar
to Subgemini yet limited as its focus exact structural matches
of analog circuits. The previous approach [7] to this prob-
lem explored different graph-based algorithms for structural
similarity matching such as a maximum common subgraph.
The problem with many of these techniques is that most
graph algorithms are NP-complete and would be infeasible
for large and complex circuits. The proposed system needs to
perform many comparisons quickly and efficiently for circuits
of various sizes and complexity. Otherwise, by the time similar
circuits are suggested, the reference design could be in a
completely different state than when it was last examined.

Aside from structural comparison, there has been existing
work in trying to compare circuits based on their functionality.
Subramanyan et al [8]. extracts high-level components from
flattened netlists by partitioning the circuit into k-cuts. The
function of the k-cuts are then compared to a database of pre-
defined bitslices. Yet, in order to be computationally feasible,
the inputs are of the k-cuts are limited to six. Furthermore,
depending on how structural netlist is arranged, the function
of the cut can be obfuscated due to side inputs. Li et al
[9] tackles the same problem but using formal verification
techniques. However, the formal properties of the circuit has
to be manually described and cannot be extracted from the
circuit description itself. Many of these endeavors do not give
a good sense of how similar two circuits are.

III. COMPARING SIMILARITY OF CIRCUITS

In order to suggest reusable designs to the user, the main
issue that needs to be addressed is how to assess and compare
the similarity between two circuits. Comparing the similarity
of circuits is a difficult task. Hardware designs have complex

structures and functions that can be represented in countless
different ways. Also, different designers may have different
definitions of what is considered similar. For example, how
similar is a multiplier to a shift operation? Both are fundamen-
tally different, and yet, many hardware designers use the left
shift operator to perform very fast and efficient multiplications
by two. Based on previous work, this is the first paper that
explores an approach to capture the underlying nature of the
circuit in a compact representation such that the similarity
of two circuits can be compared. The flow of the proposed
method is depicted in Figure 2.

A. System Overview

Starting from a reference design, the abstract syntax tree
(AST) is extracted. In this paper, a textual design entry with
a hardware description language (HDL) such as Verilog or
VHDL is used, but can be extended to various design entry
platforms such as graphical entry tools. The previous approach
to this problem [7] explored using information from the
flattened netlist as a starting point. While a netlist contains
a common representation among all designs, it is difficult
to extract meaningful data efficiently especially for large and
complex circuits. In addition, important information such as
hierarchy is lost during the flattening process. The AST on the
other hand contains a compact and descriptive representation
of the overall design. Once the AST is extracted, the different
components of the birthmark, defined in the following section,
can be constructed. The birthmark is passed to a central server,
which compares it against the birthmarks of existing designs
to determine which circuit is most similar. Results of the
comparison are then sent back to the client in a ranked order
so that the user is aware of which designs are most relevant
to the reference.

B. Hardware Birthmarking

A hardware birthmark is defined as a representation of
the overall structure and functionality inherent to a specific
circuit. Birthmarks are commonly seen in software [10], for
detecting plagiarism [11], malware and viruses [12] [13], and
theft [14]. The overall idea of a birthmark is leveraged and
extended for hardware designs, which is described further in
this section. The similarity of the circuit can be assessed by
directly comparing the birthmark themselves.

The general hardware birthmark scheme of a given circuit
is partitioned into three different components: the functional
component, the structural component, and the constant com-
ponent.

1) Functional Component: The first component of the
birthmark targets the AST or dataflow DF of a circuit C.
A dataflow is a directed graph DF = (V, E) of C, with a
set of inputs I C V and outputs O C V, where |I| > 1 and
|O] > 1. The dataflow of a 8-bit up counter can be seen in
Figure 3. From the dataflow, functional information of a circuit
can be extracted in the form of a sequence where the sequence
represents a datapath. A datapath DP is a path, {v;...v,}, in
DF where v; € I is the source node and v,, € O is the

A
5] %4
o 181 smux | ¥

S 8

[/s
— W]

$7

; <g>
7 $mux
I s s'ooanooon/

<

w[=]>

Alphabet \
Input |

$Sdff F
$add A
$mux M
Output [e]

Fig. 3. Datapath is extracted from the dataflow from an input port to an output
port. Each operation is assigned a letter in an alphabet to for a sequence

sink node. Each v; € DP is assigned a specific letter in a
given alphabet that corresponds to the type of operation. For
example, in Figure 3, the datapath {11, $2, $4, $7, $9, out}
has the sequence JAM M DO.

The datapath itself does not capture the entirety of the
dataflow. In order to capture as much of the dataflow as
possible, three different datapaths are extracted, the maximum
length path (D P4,), minimum length path (D P,,;,), and the
longest path with the greatest number of unique components
(DPyipha). The functional component of the birthmark is
formally defined as follows:

Definition 2.1. The functional component F’ of the birthmark
Bis BF(C) = {DPmaI7DPmina DPalpha}~

2) Structural Component: The second component corre-
sponds to the structural aspect of the circuit using a molecular
similarity matching techniques. Molecular similarity matching
[15] is a technique used to compare the similarity of two
molecules using fingerprints. A typical fingerprint is a bit-
vector where each bit represents the presence or absence of
a specific structural pattern in a molecule. The intuition is
that the more patterns two molecules share in common, the
more similar the molecules are to each other. The idea of
fingerprinting is extended and applied to circuits.

The first step is to define the fingerprint for a circuit C.
A fingerprint F'P is a vector where each index ¢ of F'P
represents a predefined subcomponents, {scj...sc,} where
sc; € FP, i = 1,2,...,m. In order to capture the number
of occurrences, a generic vector is used where F'P(C'); is the

<8>
Al s2
RN

—{ $mux

S
o

| <e>

,’
o

<

/

$7
$mux

<

o>

............ S T
//

Fig. 4. The figure shows how the fingerprinting process works. Each position
in the vector indicates the number of occurrence of a specific subcomponent

Frequency of Constant Values
140 T T .

120}

100

80

60

Occurances

40

20

100 200 300 400 500
Constant Value

Fig. 5. Breakdown of occurrences of constants in 151 Verilog files.

number of occurrences of the subcomponent sc; in C. Each
sc; is predetermined and represents a specific operation within
the dataflow, such as adders, memory elements, shifters, etc.
Figure 4 shows the fingerprinting process of a 8-bit counter.

Definition 2.2. The structural component S of B is Bg(C) =
FP(C) = {#scy....4£5¢m }.

3) Constant component: The third component represents
constants instantiated in a design. Depending on the func-
tionality of the circuit, designs with similar constants could
suggest that there exists a relationship between the two. For
example, typical baud rate constants can be a reasonable indi-
cator that the design is or contains communication interfaces.
Thus designs with similar constant values suggest that they
could be related.

Since constants can take on a wide range of values, it
is infeasible to create a feature vector that spans the entire
constant space. Therefore, a binning approach is used. Figure
5 analyzed over 150 circuits from a wide range of sources
including OpenCores, the current leading community for open
source hardware IP cores. From the figure, most of the constant
values range from between 0 and 256. In addition, small spikes
in Figure 5 suggests that constants that are powers of two are
fairly common. Taking the data into account, a bin is made
for every constant from 0 to 256 as well as additional bins
for each power of two greater than 256 and constants between
them up to 232. Additional bins are added for don’t-cares as

$4
$mux

w[w]>
Py

<8>

7 = <8> ésmx Y
e oo >—s
/1 Creset 3~
i
ATifo}.. (0] 0 0} -(0] 0]
0o 1 2 256 257-511 512 2°32 >2/32

Fig. 6. Extraction of the constant component. The figure also shows the basic
layout of the binning approach.

http://www.opencores.org

well as high-impedance inputs. Figure 6 shows the extraction
of the constants as well as the layout of the bins used.

Definition 2.3. The constant component Cnst of B,
Benst(C) = {by,...by }, ki € b; where b; is the ith bin and k;
is a constant found in C.

C. Computing Similarity Between Birthmarks

Computing the similarity between two birthmarks depends
on the scheme of the birthmark. Since the birthmark consists
of three different components, a separate method is needed for
each distinct component.

1) Functional Similarity: The birthmark extracted from the
functional birthmark consists of a variable-length sequence.
One way to compute the similarity between two sequences is
to use a sequence dynamic programming alignment technique
such as Smith-Waterman. Sequence alignment methods are
commonly used in bioinformatic as a way to find common
regions or mutations in biological structures. In regards to the
functional component, similar regions in the datapath can be
located. In addition, local alignment techniques provide a way
to see if the datapath is part of a larger one. A scoring matrix
is also applied such the scores can be fine tuned for each
pair of operation in the datapath. Operations that are more
uncommon have a higher score when matched such as look-
up table blocks. Furthermore, the matching score can be set
higher for blocks that are similar in functionality. For example,
multiplication by two can be rewritten by shifting to the left
by one; however, the blocks are functionally different. As a
result, the matching score for a multiplication to shift can have
a lower matching or penalty score.

It is possible to compare the dataflow of two circuits di-
rectly using a subgraph isomorphism or a maximum common
subgraph approach but the complexity of many graph-based
algorithms are NP-complete. Using a sequence alignment
method such as Smith-Waterman is only O(nm) where n
and m are the length of the two sequences instead of NP-
complete. Moreover, a sequence alignment technique allows
for mismatches and gaps to exist within a sequence that can
represent errors the user made during the design phase or
subtle difference based on individual design choices.

2) Structural and Constant Similarity: The structural and
constant component of the birthmark are of the same repre-
sentation where they enumerate the different structural features
and characteristics of a circuit. Typical comparison methods
for fingerprints use a similarity metric such as the Tanimoto
coefficient due to chemical fingerprints consisting mainly of
zeros [16].

Since the fingerprint in the structural component uses a
fixed-length generic vector instead of a bit vector, a different
similarity metric needs to be selected. Instead of Tanimoto’s
coefficient, a Euclidean distance metric is used to calculated
the similarity between the two fingerprints.

3) Similarity Score: The scores of the different components
need to be combined into a single score; however, the scale
of the scores are different. The Euclidean metric is based on

the distance between two fingerprints where the higher the
distance, the more dissimilar the two components are. On the
other hand, the score that the sequence alignment returns is
based on the point-based scoring system used by the scoring
matrix, rewarding points for correct matches, and penalizing
for mismatches. The higher the score, the more similar the
two components are.

The metrics in each component needs to be normalize
such that they are between zero and one. The normalized
Euclidean distance is subtracted from one so that a value
towards one indicates similarity and a value towards zero
indicates dissimilarity. Once the scores are normalized, they
can be combined to form a single similarity score, sim with
0 < sim < 1, that indicates how similar the two circuits are
by averaging the scores. Many of the features and components
can be weighted such that the more important component has
a larger influence, but will be left for future work.

IV. RESULTS AND ANALYSIS

A circuit similarity comparator tool was developed using the
methods described above in C++ and Python. A Verilog design
is taken as input, comparisons are made with the reference
against the a database, and a list of similar circuits in ranked
order is produced.

The tool uses Yosys [17] to extract the AST from the design.
Currently, Yosys does not support VHDL but tools such as
vhdl2verilog can be used to convert a VHDL file to Verilog.
The Seqan library is used for pairwise sequence alignment of
the functional birthmark. To evaluated the performance of the
birthmarking approach, a database of circuits is constructed.
The circuits in the database are extracted from a variety of
sources from Opencores, [18], [19], [20], [21], and ranges
from communications interfaces, such as UART and SPI, to
filters and FFTs, totalling more than 150 circuits for initial
testing purposes.

A. Performance

In order to suggest circuits that the designer can reuse, the
comparison of two birthmarks has to be fast and efficient. If
the comparison is too slow, the design may have changed sig-
nificantly such that the results of the comparison is no longer
meaningful to the designer. Real-time feedback whenever the
design changes is desired.

While the performance of such a system is necessary to
take into account, the focus of this paper is the identification
of similar circuits. Many of these optimizations in regards to
performance is left for future work. These tests were executed
on a machine with an Intel Core2 Duo and 4GB of RAM.

1) Birthmark Extraction: Figure 7 show the total execution
time to extract a birthmark from a Verilog design. The AST
extraction from the Verilog design is all handled by the Yosys
tools. Afterwards, the birthmark is extracted from the AST that
Yosys generates. The execution time for several of the larger
circuits such as the FFTs take close to ten seconds before the
birthmark is extracted. However, based on the time it takes
for a user to input and make changes on the design, this is

http://www.seqan.de/

TABLE II
RANKING RESULTS FOR VARIOUS MODULES OF DIFFERENT TYPES

[Score [mmuart* (COMM) [Score | cf_fft_256_18* (DSP) |

Score [[altera_sig_mult (ARTH) [

Score [generic_dpram* (MEM) |

84.09 mmuart_transceiver®* | 88.57 cf_fft_256_16* 86.21 altera_sig_altmult_add 92.84 ram_sp_sr_sw [19]
82.22 rtfSimpleUartRx* 86.69 cf_fft_256_8* 80.34 firfilter 90.02 nesu_regfile [22]

81.44 tiny_spi* 48.64 cf_fft 512_18* 78.86 qmult* 88.08 ram_sp_ar_sw [19]
80.82 simple_spi_top* 41.78 cf_fft_512_16* 77.82 altera_unsig_altmult_accum | 83.43 altera_true_dpram_sclk
80.60 rtfSimpleUart* 41.28 cf_fft_512_8* 76.11 firfilter2 80.63 behavelp_mem*

77.81 rtfSimpleUartTx* 35.16 || qdiv2* 75.89 altera_unsigned_mult 79.78 behave2p_mem*

77.69 uart_rx_only 28.63 pipelined_fft_64* 72.34 TIR2_18bit_parallel 79.58 altera_ram_infer

77.41 uart_rx_only3 [23] 28.51 IIR6sos_18bit_fp 71.29 qmult* 79.58 altera_ram_dual

74.97 uart_rx_only2 [24] 28.21 dft_4_4_strm_dt [25] 71.28 mult_piped_8x8_2sC [20] 79.27 ncsu_fifo [22]

74.79 uart_simple [19] 27.33 qdiv* 71.28 mult_para_rc_8x8_2sC [20] | 77.07 altera_single_port_ram

The IIR and CIC filters are examples from [21]. Circuits with the * beside them are from the Opencores database. The circuits with the altera heading are

from [18]. The rest are circuits that had been manually designed.

a reasonable amount of time to take for extraction. Larger
and more complex circuits can be addressed by looking for
matches of the submodules in the lower levels of the hierarchy.

2) Circuit to database search: Results for comparing the
birthmark of the reference circuit against a preprocessed
database of existing designs can be seen in Figure 8. Since
the structural and constant component of the birthmark are of
a set size, the comparison between these components should
not affect the overall performance of the comparison as the
circuit becomes more complex; however, comparison of the
functional component is based on the size of the two datapath
sequences. Therefore, the execution time is heavily dependent
on the size of the sequences. In order to scale to larger designs,
hierarchical information of a design can be used of optimize
the search space. The modules in the higher level of the
hierarchy can be ignored if the similarity score shows little
correlation when comparing the reference to the birthmark of
the lower level modules. Decision trees or a relational data
structure that groups similar designs together can help reduce
the search space ignoring drastically different designs during
the search phase.

Extracting Birthmark From AST

10r ,.
E L]
[J) 17 .. - °
£ .
[= 2 o
c oo o
o L ° B
g o o gt
J
() L]
(9] © 's
W
LI)j 0.017 L] '.;.*r.
s o8
[
1 10 100 1000

Number of Nodes

Fig. 7. Performance of extracting a birthmark from a verilog file. Execution
time includes synthesis from Yosys and the proposed tools for extracting the
birthmark from the AST

B. Identifying similar circuits

Once the birthmarks are extracted, the similarity between
circuits can be determined by directly comparing their birth-
marks. By preprocessing the existing circuits into birthmarks
ahead of time, the run-time comparison is significantly faster.
Table II presents the results that the birthmark comparator
returned. Four different reference circuits are observed, each in
one of four domains: communications, digital signal process-
ing, arithmetic, and memory hardware modules. Table II shows
the top ten results returned by the ranking system. The score
column represents the similarity score between the reference
and the circuit in the database.

Overall, the ranking of similar existing designs to the
reference turned out quite robust. Anomalies in the results
can be seen and are to be expected since this is a similarity
measurement. Looking at the communications column, most of
the circuits found resembles different implementations of the
UART controller from different designers. Certain SPI designs
were ranked higher than UART, but since UART and SPI
are both communication interfaces, their datapaths are fairly
similar. With the DSP modules, the reference design is a radix
2 FFT with a transform size of 256 and the precision set to
18 bits. By observing the top five circuits, the birthmarking

Comparing Reference Circuit to Database

]
0.8 °
= $ et
g o6
]
c L]
S 04 . °
3 o. [
5 o..\
X 02 &,
(J L)
0
0 50 100 150 200

Input Sequence Length

Fig. 8. Performance of comparing each circuit in the database to the database.
Performance is dependent on the varying sequence length of the functional
component

!H- — 1-!:-1 .l- »-
]

i
T EE

Fig. 9. Heatmap extracted by autocorrelating the circuits in the database. The
dark regions indicates dissimilarity and the bright regions indicates similarity

approach is robust against similarly designed modules using
different parameters. The tool was also able to find other
implementations of FFTs from two different sources. With the
multiplier from Altera, there were many instances of different
multipliers found. Furthermore, it was able to extract some
designs that commonly use multiplier blocks such as FIR and
IIR filters. It was also able to detect its unsigned counterpart
as well as a multipliers from several different sources. Lastly,
using the generic dual-ported RAM module as reference, the
tools were able to find many other memory modules from
various sources as well as other memory-like modules such as
a register file.

In Figure 9, a heatmap was extracted by autocorrelating the
database of existing designs. The darker the regions is the less
similar two circuits are and the brighter the region, the more
similar the circuits are. Since the circuits are group together
by what is believed to be similar circuits, most of the brighter
regions are close to or near the diagonal. Some anomalies can
be seen throughout the map and are explained in the next
section.

C. Limitations

As noted before, there are certain limitations in which the
birthmark does not capture all the information contained in
a specific design. The birthmarking approach does a decent
job at classifying circuits that are within or close to the same
domain. This means that it can identify circuits that are closely
related. For example, whenever a UART design is used as
a reference, the top results are usually UART interfaces or
SPI interfaces and can be seen for various UART or SPI
circuits; however, this means that this approach does not
handle intraclass comparisons very well. When trying to find
similar UART designs, SPI designs may end up being one of
the top results or vice versa.

Finding the superset of a module is also not very effective.
For example, a FIFO design that uses the generic dual-ported
RAM reference circuit is ranked at 93 out of 151 circuits
even though it contains that specific design. The structural
components are similar, but the number of each component
is different, which make it appear different. Using a cosine
similarity metric instead of a Euclidean could help alleviate
this, Even so, this would be beneficial if the fingerprint size
is much larger. Many circuits share a good amount of the
predefined structural components and therefore the angles
won’t change significantly from circuit to circuit. Therefore,
just the cosine similarity metric alone would not be able to
efficiently distinguish the results.

It is important to note that the AST extracted from a
HDL design depends on the design choices the designer
makes. If the Verilog module is designed using a behavioral
syntax, the the AST extracted will use behavioral datapath
components and similarly the same for structural syntax. This
means that two functionally equivalent circuits designed using
both structural and behavioral Verilog will have completely
different datapath because of the granularity of how the circuit
was described. On the other hand, it can be argued that if it is
common to have a circuit described in a specific syntax, then
it is more likely that there will be an existing design described
the same way. Furthermore, as the database of circuit grows,
designs of both nature are more likely to exist so that when the
designer compares his reference to the circuits in the database,
there will likely be a close match.

V. CONCLUSION

A birthmarking technique for efficiently comparing two
circuits was presented. This is necessary in order to suggest
similar circuits for reuse such that the productivity of the de-
signer can be improved. If circuits are suggested automatically
for the user within the design scope, then the designer is more
likely to reuse a design if it fits within their specifications.
The system could also be used to build reliable hardware
libraries by finding circuits similar in nature. Furthermore,
with a centralized or even a local database of existing designs,
it can create a richer experience for designers looking to use
FPGAs to accelerate their application and to help broaden the
hardware community as designers contribute and learn as a
whole.

Many of the techniques described here are similar to birth-
marking methods found in software birthmarks in which key
characteristics inherent to a specific design are extracted. Key
contributions in this paper are as followed:

1) A new design methodology is described by integrating
reuse into the design environment in order to improve
productivity.

2) A birthmarking technique was presented for hardware
designs that captures both the functional and structural
properties of a circuit into a compact representation.

3) Methods for comparing the similarity of hardware de-
signs using the birthmarking technique was described

4) Preliminary experiments and results show that this ap-
proach yields promising results in comparing and rank-
ing circuits using the birthmarking technique.

Future work could explore different birthmarking schemes
for digital circuits which better captures the inherent character-
istics of the birthmark. For example, exploring ways to better
capture the underlying functionality regardless if the circuit is
described behaviorally or structurally by looking into reverse
engineering techniques. Furthermore, various optimizations
and selection of parameters and weights can be explored
in order to further improve performance and scalability of
the methods. With a stable back-end, future motivation will
be aimed towards analyzing productivity benefits from such
a design flow as well as the design of a reusable circuit
repository open to the hardware community.

REFERENCES

[1] Altera, “White Paper Military Productivity Factors in Large FPGA
Designs FPGA-based,” no. July, pp. 1-7, 2008.

[2] J. Rodriguez-Andina, “Features, design tools, and application domains
of FPGAs,” ..., IEEE Transactions on, vol. 54, no. 4, pp. 1810-1823,
2007.

[3] J. Whitham, “A Graph Matching Search Algorithm for an Electronic
Circuit Repository,” Univ. of York, 2004.

[4] M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather, “SubGemini: Identi-
fying SubCircuits using a Fast Subgraph Isomorphism Algorithm,” 30th
ACM/IEEE Design Automation Conference, 1993.

[51 X. Shi, D. Zeng, Y. Hu, G. Lin, and O. R. Zaiane, “Enhancement of
incremental design for FPGAs using circuit similarity,” Proceedings of
the 12th International Symposium on Quality Electronic Design, ISOED
2011, pp. 243-250, 2011.

[6] K.-h. Chang, D. A. Papa, I. L. Markov, and V. Bertacco, “Invers: an
incremental verification system with circuit similarity metrics and error
visualization,” pp. 487-494, 2007.

[71 K. Zeng and P. Athanas, “Enhancing productivity with back-end sim-
ilarity matching of digital circuits for IP reuse,” 2013 International
Conference on Reconfigurable Computing and FPGAs, ReConFig 2013,
2013.

[8] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascén, W. E. I. Y. Tan,
A. Tiwari, N. Shankar, S. A. Seshia, and S. Malik, “Reverse Engineering
Digital Circutis Using Structural and Functional Analyses,” vol. 2, no. 1,
pp. 63-80, 2014.

[91 W. Li, “Formal Methods for Reverse Engineering Gate-Level Netlists,”

2013.

T. Kakimoto and A. Monden, “Using Software Birthmarks to Identify

Similar Classes and Major Functionalities WizStep SettingsTab,” pp.

171-172, 2006.

D. Kim, S.-j. Cho, S. Han, M. Park, and I. You, “Open Source Software

Detection using Function-level Static Software Birthmark,” Journal of

Internet Services and ..., vol. 4, no. November, pp. 25-37, 2014.

Y. Chen, A. Narayanan, S. Pang, and B. Tao, “Malicioius Software

Detection Using Multiple Sequence Alignment and Data Mining,”

2012 [EEE 26th International Conference on Advanced Information

Networking and Applications, pp. 8-14, Mar. 2012.

H. Kim and P. Li, “Polymorphic Attacks against Sequence-based Soft-

ware Birthmarks.”

G. Myles and C. Collberg, “K-gram based software birthmarks,” Pro-

ceedings of the 2005 ACM symposium on Applied computing - SAC 05,

p. 314, 2005.

V. Moneyv, “Introduction to similarity searching in chemistry,” MATCH

Commun. Math. Comput. Chem, vol. 51, pp. 7-38, 2004.

(2011) Fingerprints- screening and similarity. [Online]. Available:

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html

C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.

Altera. [Online]. Available: https://www.altera.com/support/

support-resources/design-examples/design-software/verilog.html

Asic world. [Online]. Available: http://www.asic-world.com/examples/

verilog/index.html

[10]

[11]

(12]

(13]

[14]

[15]
[16]

[17]
[18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]

Doulous. [Online]. Available: http://www.doulos.com/knowhow/verilog_
designers_guide/models/

Dsp examples. [Online]. Available: http://people.ece.cornell.edu/land/
courses/ece5760/DE2/fpgaDSP.html

Ncsu. [Online]. Available: http://www.ece.ncsu.edu/asic/lect NTU/
AppendixA.pdf

Patchell ip archive. [Online]. Available: http://www.oldcrows.net/
~patchell/IpArchive/

Referencevoltage. [Online]. Available: http://referencevoltage.com/?p=
54
Spiral. [Online]. Available: http://www.spiral.net/hardware/dftgen.html

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
http://www.clifford.at/yosys/
https://www.altera.com/support/support-resources/design-examples/design-software/verilog.html
https://www.altera.com/support/support-resources/design-examples/design-software/verilog.html
http://www.asic-world.com/examples/verilog/index.html
http://www.asic-world.com/examples/verilog/index.html
http://www.doulos.com/knowhow/verilog_designers_guide/models/
http://www.doulos.com/knowhow/verilog_designers_guide/models/
http://people.ece.cornell.edu/land/courses/ece5760/DE2/fpgaDSP.html
http://people.ece.cornell.edu/land/courses/ece5760/DE2/fpgaDSP.html
http://www.ece.ncsu.edu/asic/lect_NTU/AppendixA.pdf
http://www.ece.ncsu.edu/asic/lect_NTU/AppendixA.pdf
http://www.oldcrows.net/~patchell/IpArchive/
http://www.oldcrows.net/~patchell/IpArchive/
http://referencevoltage.com/?p=54
http://referencevoltage.com/?p=54
http://www.spiral.net/hardware/dftgen.html

