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Abstract—XBERT is an API and design toolset for zero-
cost access to the on-chip SRAM blocks on Xilinx architectures
using the device’s configuration path. The XBERT API is high-
level, allowing developers to specify DMA-like data transfers
of memory contents in terms of the logical memories in the
application source code and thus is applicable to essentially any
design targeting Xilinx devices. XBERT is broadly accessible to
application developers, hiding the low-level details of physical
mapping and bitstream encoding. XBERT is efficient, consuming
zero reconfigurable resources with no impact on Fmax. XBERT
achieves a bandwidth of 3–14 megabytes per second (MB/s) and
complete readback and translation of a memory in an isolated
36Kb block RAM in less than 0.5 ms on a Xilinx UltraScale+
MPSoC Zynq.

I. INTRODUCTION

Today’s FPGA fabrics include a large number of distributed,

embedded RAM blocks. While the most common use of these

embedded RAMs is to supply and store data used during

computations on the FPGA fabric, it is ocassionally necessary

to load them with data or inputs from outside the fabric or to

retrieve data that they store as output from the computation.

We could use FPGA fabric resources and dedicated fabric

input/output channels (e.g., AXI channels) to move data to

and from these embedded memories, but that consumes FPGA

fabric resources as well as the limited read/write ports on the

embedded RAM primitives. And, this extra logic can create

challenges to meet application timing requirements [1].

The contents of these embedded RAMs are also accessible

through an existing, dedicated on-chip network—the bitstream

reconfiguration path. Consequently, it should be possible to use

the bitstream reconfiguration path to move data in and out of

these embedded RAM blocks without consuming any FPGA

fabric resources. Furthermore, on SoC FPGAs with embedded

processors, the processor can manage reconfigurations as part

of the system computation.

However, mapping logical memories found in the original

design source to physical memories on the FPGA fabric is a

challenging task. Once the implementation tools have mapped

a large logical memory onto multiple smaller memories, identi-

fying which physical BRAM primitive holds particular logical

data is something not readily apparent to the application

programmer and something that may change every time the

design source is changed and remapped to the FPGA. Further,

the format of data used for bitstream programming is not

the same as the logical format for the stored data—the bits

of a logical memory are not arranged in neatly ascending

order within the BRAM initialization strings and the bits in

those initialization strings are subsequently scattered across a

number of configuration frames.

To address these needs, we created the Xilinx Bitstream

Embedded RAM Transfusion (XBERT) API to provide a

high-level interface to read and write the contents of logical
memories—memories as seen by the application developer in

the source-level (e.g., RTL, HLS, IP Blocks) design.1

Transfusion operations are combined read and write opera-

tions that extract old BRAM contents and supply new BRAM

contents. Importantly, these combined transfuse operations can

be more efficient than using separate read and write operations.

Our automatic tool flow extracts the information about how

logical memories are mapped to physical embedded RAMs

to allow the XBERT API to operate on those memories.

Our API is able to read and translate the resulting data to a

logical memory format in a fraction of a millisecond providing

effective data transfer rates in the MB/s. This is not as fast as

a dedicated, high-speed link (e.g., AXI channel at 5 GB/s), but

is adequate for memories that are accessed infrequently (e.g.,

to program with unique data at startup or recover data when

the program completes) or at modest bandwidth (e.g., periodic

parameter adjustments) as illustrated in Secs. II and III-F. And

significantly, this is achieved with no reduction in Fmax or

consumption of FPGA resources.

Our contributions include:

• An API to provide logical access to memories stored in

embedded RAMs in the FPGA fabric (Sec. V)

• An open-source implementation of the XBERT API for

the UltraScale+ MPSoC Zynq, including both the tool

flow to extract the logical↔physical mapping for individ-

ual memory bits and runtime support to read and write

the running FPGA’s memory contents (on-line at [2])

• A customized compression technique for the logical-to-

physical bit mapping that reduces translation table size

from megabytes to kilobytes (Sec. VII)

1Technically, XBERT works on the logical memory organization as re-
flected in a DCP (Design CheckPoint) file.
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• A table-based acceleration that can reduce single BRAM

translation times to be comparable to DMA transfer times

(Sec. VIII)

• A characterization of the performance of the API imple-

mentation (Sec. IX)

II. CUSTOMERS OF ON-LINE TRANSFUSION

Many use cases exist for the general capability provided

by XBERT. Programming BRAM-configured overlay archi-

tectures is one obvious need to infrequently modify embedded

RAM contents, including updating program memory contents

in embedded soft processors such as RISC-V processor cores

[3], [4], custom VLIWs [5], and customized VLIW [5], [6],

and Vector [7], [8] processors. This need to load instructions

also applies to loading configurations for more specialized

overlay fabrics such as dedicated FSM evaluators [9], [10]

and Neural Networks [11] or simulators [12].

Another use case is at-speed unit testing of FPGA building

blocks, where it is desired to feed the module-under-test with

data at full rate and capture the results. This can be done

with a memory to source data into the module-under-test and

a second memory to record the results. Similarly, in live

debugging with an Internal Logic Analyzer (ILA) or trace

buffers [13], [14] to capture data during operation, the speed

at which we offload this data after a test is often not critical.

Finally, at the extreme, XBERT functionality could provide

an inexpensive way to support advanced abstractions like

CoRAM [15] on current FPGAs. CoRAM proposed adding

dedicated infrastructure to manage data movement between

embedded RAMs and a central memory and demonstrated

prototypes that built an overlay network on top of the FPGA.

Using XBERT, the same functionality could be provided using

the existing reconfiguration path hardware support without the

cost of the added overlay logic.

III. XBERT: OVERVIEW, CHALLENGES, AND SOLUTIONS

This section introduces XBERT, including the challenges

and operational requirements for a system like XBERT along

with its solutions to those problems and the resulting benefits.

A. Basic Single BRAM Operation

To start out, consider the simple use case of changing the

contents of a simple logical memory that maps to a single

36Kb BRAM. If the logical memory happens to be an XPM

instantiated memory, Xilinx’s UpdateMem program, running

on a host, can change the BRAM in the full bitstream. It

takes 4 seconds to run UpdateMem to change the bitstream

to reflect the new BRAM contents and 9 ms to load the full

bitstream onto a XCU3EG. This is both slow and demands

the use of a separate host machine.

Using the simplest write API in XBERT (bert_write)

we can perform the update while running code on an embed-

ded APU core on the Zynq and write the BRAM in 1.04 ms

(over 3900× faster). This includes 0.71 ms to translate the

bits (convert the logical memory bit description into a partial

bitstream) and 0.25 ms to write the partial bitstream to the

device through the Zynq PCAP; the write achieves 3.9 MB/s

bandwidth. Importantly, this XBERT write operation works for

any logical memory, not just those instantiated with an XPM.

B. Table-Based Translation, Compression, and Acceleration

While UpdateMem runs using the full Xilinx device

database for the part and the full set of design checkpoint

data for the design, XBERT replaces this information with

a minimal translation table describing where each logical

memory bit is mapped into the bitstream. This raw translation

table in XBERT initially takes 238 KB, but using compression

we can reduce that to 2.3 KB (Sec. VII).

The dominant component of the 1.04 ms XBERT time

above is in translation (0.71 ms), which consists mainly of

computing the bitstream locations for the individual bits from

the logical memory image. When we add an accelerated,

multi-bit, table-based translation ability to XBERT (Sec. VIII),

we can reduce this to 0.28 ms, so the entire write occurs in

0.62 ms for a throughput of 6.59 MB/s—about twice as fast

our unaccelerated case.

C. Transfusion - Combining Operations For Performance

Turning to the minimum DMA transfer time for our single

BRAM memory, we note it is large (0.25 ms), in part, because

writes occur in frames, requiring the writing of data for all 12

memories that share a frame in the UltraScale+ architecture

(Fig. 3). If we need to write many BRAMs in a frame, either

because a logical memory uses many BRAMs, or because we

need to write many logical memories that happen to share

a physical frame, we can reduce the DMA transfer time

per BRAM. At the extreme, we bring the per-BRAM DMA

transfer cost down by a factor of 12 to around 0.021 ms,

so the total per-BRAM write cost is around 0.32 ms (or

a throughput of 11.75 MB/s—about twice again the single

accelerated throughput). As a result, it is efficient to have a

scatter-gather interface that allows us to specify the full set of

logical memories we would like to write as a single operation

so the API can minimize the number of frame writes required.

Our transfuse API interface provides this capability (Sec. V).

While there are write enables that allow us to write a single

36Kb BRAM in a frame at a time, there are no write enables to

control independently writing the two 18Kb memories within a

single 36Kb BRAM. To write one 18Kb memory in isolation,

we may need to read the entire frame first in order to preserve

the value of a partner 18Kb memory in the block. The XBERT

transfuse API can combine this readback with the read of other

logical memories in the same physical frame (Sec. V).

D. Dealing With Larger Memories — Logical To Physical
Memory Mapping

For simplicity, the examples above used a logical memory

that mapped to only a single BRAM. In practice, logical

memories often map to multiple physical BRAMs. When this

happens, there are many choices for how the bits are packed

into memories. For example, in one 32×10,000 memory, we

have seen that Vivado mapped the bottom 18b ([17:0]) of the
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memory to five 18×2048 RAMB36s, the next 9b ([26:18]) to

three 9×4096 RAMB36s, the next 4b ([30:27]) to two 4×8192

RAMB36s, and the final bit ([31]) to one 1×16,384 RAMB36;

this non-uniform mapping uses only 11 RAMB36s, whereas

in other designs, we have seen Vivado map a similarly sized

memory to a set of 16 RAMB36 memories, each 2 bits wide

by 16K words deep.

Finally, for memories smaller than a single BRAM, Vivado

may tie off high order address bits to values other than 0

meaning the logical 0 location for the memory does not start in

the normally expected location (the first frame of the frameset

for the physical BRAM).

To address these complicated and tedious physical map-

ping issues, the XBERT toolflow automatically extracts these

mapping details from the Vivado Design CheckPoint (DCP)

file or project as a part of its Logical to Physical Memory

Mapping capability. As a result application developers need

not deal with them—they are able to deal exclusively with

logical memory contents, and the many mapping details are

hidden from them by XBERT (Sec. V).

E. XBERT Design Flow Summary

Fig. 1 illustrates the host side preparation tool flow for

XBERT. Starting at the top, the user’s design (represented

minimally in the form of a design checkpoint) is processed to

extract information on the logical memories contained in the

original design source, resulting in an MDD file (Sec. IV-D).

That is then combined with bitstream information extracted

from Xilinx-produced .ll files to create a complete represen-

tation of the logical-to-physical memory mapping information

for the design (mydesign_uncompressed.{c,h}). This

is then compressed and optionally accelerated to produce a

mydesign.c file containing a compressed version of that

information as C data structures.

At the bottom of the figure, a final XBERT application is

assembled from three sets of source code: (1) the XBERT

runtime source code (bert.c), (2) the mydesign.c file,

and (3) the user’s application code (application.c).

This is linked against XBERT’s extended xilfpga libraries

(Sec. VI) into the final executable application program.

F. A Full Motivating Example

Consider developing a Huffman encoding accelerator that

contains four independent memories. This Huffman encoder

takes in a stream of bytes and compresses it by mapping each

byte to a variable-length code. And, for good compression, the

Huffman code should be tuned to the data being encoded.

We design the encoder to work for any encoding using an

encoding table (memory #1) and can use XBERT to update

its contents when changing encodings. The encoding table in

the HDL source is read-only but we can use bert_write to

load its contents. This takes 1.1 ms to load the table. Without

XBERT, we would need to use an AXI port to perform the

load, which would be faster, but adds LUTs and registers to

the design (Tab. I).

application.elf

application.c
mydesign.c

mydesign.dcp

generate_memory_locations

extract MDD, LL

compress (accelerate)

mydesign_uncompressed.{c,h}

mydesign.llmydesign.mdd

cc cccccc

ld

xilfpga.c bert.c
(include .h)

P
re
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re

d 
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 D
ev

el
op

m
en

t H
os

t

Run on 
Embedded
Core

Fig. 1. XBERT Tool Flow

TABLE I
IMPACT OF ADDING AXI ACCESS TO MEMORIES IN HUFFMAN EXAMPLE

Variant LUTs FFs Fmax
No AXI (XBERT only) 165 80 425 MHz
+ AXI for encoding table 1360 1125 405 MHz
+ AXI for histogram memory 2272 1818 405 MHz
+ AXI for results memory 3112 2531 405 MHz
+ AXI for input data memory 3903 3176 405 MHz

When we first design the encoder, we often want to test it

for functionality and speed before the data source and data

consumer are added to the design. We can do this by adding a

memory to hold the input data (memory #2) and a memory to

store the output data (memory #3). Using XBERT we need

nothing else. We can load new data to be compressed by

the encoder into the input memory using bert_write and

recover the compressed output using bert_read.

We also add a histogram memory to capture the character-

istics of the input data using a 256-element memory (memory

#4). Using bert_read we can read the contents of this

memory back in 0.45 ms. If we’re compressing one byte per

cycle, this histogram would need to perform both a read and a

write on each cycle, meaning both its ports are being used. For

a non-XBERT design to provide readback, it would need to

share one of the ports or duplicate the memory to effectively

provide another read port. With XBERT neither is required.

Using XBERT we can read or write any of the four

memories in the design. We could read the histogram memory

contents, compute a new encoding table tailored to the input

data stream, and write the new encoding table back to the

design, all in under 1.2 ms.

Tab. I shows the impact (area, Fmax) of adding AXI

interfaces to the design. We use an MMCM between the AXI

subsystem and the Huffman decoder so the latter can run at its

maximum clock rate and not be limited by the maximum AXI

clock rate of 333 MHz. Since this Huffman example is small,

the Fmax impact of providing access to the BRAMs is small.

In larger, highly congested designs, [1] claims eliminating

AXI BRAM access can realize as much as a 63% Fmax

improvement (Sec. IV-C).
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IV. RELATED WORK

A. Physical BRAM Manipulation Applications and Tools

A number of tools have exploited cases where they could

provide useful functionality working with raw BRAMs without

requiring mapping or translation back to the logical level.

As early as 2000, Xilinx provided experimental, low-level

support for partial reconfiguration readback and reloading of

embedded RAMs [16], [17], used mainly for memory readback

and scrubbing [18]. More recently, ReconOS uses bitstream

reads and writes for multitasking [19] (to load and unload

BRAM contents via bitstreams). Metawire uses bitstreams to

move data from BRAM to BRAM to provide Network-on-

a-Chip (NoC) functionality; since they control the BRAM

mapping and move from BRAM to BRAM, they avoid the

need to translate from physical to logical mappings [20].

Similarly, several works have used direct BRAM writing for

specific applications including [21]–[23].

B. Physical Bitstream APIs

More recent work has aspired to provide an API

for physical-level bitstream manipulation. BITMAN pro-

vides a general physical level access mechanism to

BRAM contents with their change_BRAM_content(X,
Y, new_config) API [24]. As with the above tools, it

requires that some higher-level interface or manual devel-

oper intervention determine which BRAM locations need to

be changed and to format the configuration data, including

shuffling the logical bits to their locations in the physical

configuration mapping.

Similarly, recent work in [25] advocates this approach of

using bitstream readback and edits to read and write BRAM

contents and demonstrates their use to copy data between

BRAMs. But, it does not address identifying which physical

BRAMs are used for a particular logical memory. Nor does

it provide a complete description or high-level tool that will

allow a developer to map their HLS or RTL logical memory

contents into the bitstream or to extract bitstream contents and

reconstruct the state of the HLS or RTL memory.

C. Specialized Logical Memory Manipulation

Maxeler explores using the bitstream path to load and

read their “Mapped Memories” instead of a separate low-

speed bus [1]. They show that removing the low-speed bus

and its associated demand on fabric resources increases the

performance of their designs by up to 63%. Their bitstream

interface achieves up to 2 MB/s data transfer bandwidth.

The Maxeler use is, perhaps, most similar to what XBERT

provides. However, Maxeler (a) only uses this BRAM path

for a specific use of memories generated internally to their

compiler, (b) does not provide a general API available to

developers for use for any memory or any tool chain, and

(c) their tool must take control itself of the mapping of

logical memories to BRAMs because they do not have enough

information to determine how the Xilinx tools map logical

memories to physical memories.

Similarly, Xilinx Vivado provides support for changing the

initial value of configuration memories in a bitstream mostly to

support instruction memories for MicroBlaze processors [26].

This includes a BRAM Memory Map Infromation (MMI) file

that records the physical BRAMs used to support MicroBlaze

and Xilinx Parameterized Macro (XPM) memories and the

UpdateMEM tool that can update the bitstream with data

from a logical memory file [27]. The MMI generated by

Vivado does not cover all logical memories in the design, and

UpdateMEM only produces a complete bitstream.

XBERT closes all of the above gaps in these related

works by providing open-source, logical-level access to the

bitstream read and write path. It accommodates all designs,

all memories, and all tool flows that go through DCPs.

D. Existing Bitstream Manipulation Support

A number of tools are available that can be helpful in

creating bitstream manipulation tools. The XBERT system is

based, in part, on some of them.

The Xilinx tools have long produced Logic Location (LL)

files for memories as part of bitstream readback generation

[28]. The LL file contains the frame and bit location for every

data bit in a physical BRAM, but provides no mapping infor-

mation about the logical memories and how a logical memory

is mapped onto multiple physical BRAM tiles. Nonetheless,

the LL file is useful for deciphering the frame and bit positions

for a BRAM within XBERT as show in Fig. 1.

Project X-Ray [29] and the more recent Project U-Ray [30]

provide databases mapping the configuration bits in Xilinx

7-series and UltraScale+ devices to frame and bit locations.

These contain no information on logical-to-physical memory

mapping within a specific design but do provide information

and tools for bitstream encoding (understanding the locations

of physical memory bits within the bitstream).

Building upon Project X-Ray, BYU developed an open-

source tool, prjxray-bram-patch [31] that serves a

similar role as Vivado’s UpdateMEM, but works for all

logical memories in a design and for all design flows.

The bram-patch tool defines a Memory Description Data

(MDD) file that plays a similar role to the Xilinx MMI

file. Derived from a Vivado design using Tcl, an MDD file

describes, for each logical memory in a design, the collection

of physical BRAMs to which the logical memory is mapped,

how the logical memory bits were partitioned between the

physical memories, and how the bits are packed into the

INIT strings of a physical RAMB primitive. The XBERT

system uses this information as a part of its logical-to-physical

mapping step (Fig. 1).

V. THE XBERT API

XBERT is designed to run on the embedded APU cores on

Zynq SoCs. As shown in Fig. 2, it provides a logical-level

interface above that provided by xilfpga or the interface

provided by physical-level bitstream manipulation tools such

as BITMAN [24]. It does this by extending xilfpga with
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frames

commands and frames

logical

xilfpga

xilfpga expanded

full bitstream read
full bitstream write
partial bitstream write

partial bitstream read

partial bitstream write

xbert
read logical memory
write logical memory
scatter−gather read/write of logical memory set

physical bram
bitman

bram write

Light red provided by Xilinx; light blue provided by

this work; light green from [24].

Fig. 2. API Layering for XBERT

partial reconfiguration support and command generation for

BRAM writes (Sec. VI).

The entry-level XBERT interface is a simple pair of routines

providing a DMA-like interface to read or write an entire

logical memory.

int bert_read(int logicalm,
uint64_t *data,
XFpga* XFpgaInstance);

int bert_write(int logicalm,
uint64_t *data,
XFpga* XFpgaInstance);

These routines take care of bit shuffling between the frame

format and the logical format of the memory as well as

performing the needed partial reconfiguration reads and writes.

To support these API calls, the XBERT preprocessing

tools process the MDD files (Sec. IV-D) to produce files

mydesign.h and mydesign.c (Fig. 1). These include

C code definitions of the specific memories in the design

including the logical-to-physical translation tables.

One limitation of the simple API above is that every read or

write call first does a logical to physical memory translation

followed by a bitstream read or write operation to the device.

This can be inefficient if the application needs to read or

update many different logical memories that are mapped to

the same configuration frames.

To allow more efficient transfer, XBERT also provides

an API that can read and write a set of multiple mem-

ories like a scatter-gather DMA operation. This is the

bert_transfuse() call that allows XBERT to perform

one set of frame reads, translations, and then a single set of

frame writes covering all the logical memories that may share

a set of frames:

int bert_transfuse(int num,
struct bert_meminfo *info,
XFpga* XFpgaInstance);

The bert_transfuse routine takes an array describ-

ing the operations on a collection of logical memories.

To describe each transfusion operation, it uses a structure

(bert_meminfo). The structure specifies the memory, the

operation (read or write), and the logical address range we

are reading or writing in the memory. To support data wider

than 64b, this supports an array with multiple data words

for each array slot. And, we allow operations on a subset of

words in the logical memory by specifying a start address

and length. This allows access and update to a subset of the

frames associated with the BRAMs holding data for the logical

memory, which is more efficient when only a portion of the

memory needs to be read or written. The transfuse operation

also arranges the set of write data along with PCAP control

instructions so that they can be performed with a single DMA

write transfer, minimizing the overhead of DMA setup.

The APIs assume that it is safe to perform the read and write

operation. Putting the computation into a safe state where the

memories are not being written during the read or write is

the responsibility of the application. For example, using the

standard Xilinx IP block-level interface protocol generated by

Vivado/VitisHLS [32], one might watch for the block to be

done (ap_done), perform the XBERT operations, then restart

the module (ap_start).

VI. PARTIAL RECONFIGURATION

Partial reconfiguration is the loading of configuration data

for a portion of the FPGA resources without disturbing the op-

eration of the remaining resources. In modern Xilinx devices,

the atomic unit of configuration is a frame that is organized

along FPGA columns. In the Xilinx UltraScale+ series, each

frame has 93 32b words. Since BRAM data constitutes a small

fraction of the total bitstream, using partial reconfiguration to

access only BRAM frames reduces bitstream read or write

time compared to full bitstream reads or writes.

In modern FPGA devices, embedded RAMs are placed

in columns. The UltraScale+ series have 36Kb BRAMs

(RAMB36) that can each alternately be configured as a pair

of 18Kb BRAMs (RAMB18). Each frame in the Xilinx

UltraScale+ series device covers 12 RAMB36 memories [33,

Chapter 8, Configuration Frames] and has 144b for each

RAMB36, 72b for each of the two RAMB18s. It takes 256

frames to cover the BRAM group (See Fig. 3). The set of

144b per BRAM in a frame are grouped into 240b blocks.

There is a write enable bit for each 144b RAMB36 group in

a frame roughly in the middle of the 240b block. The write

enables allow updates of a single BRAM36 at a time, but it is

always necessary to transfer data in units of frames. BRAM

data frames are separate from frames that hold routing or LUT

configurations.

Zynq devices include a Processor Configuration Access Port

(PCAP) to allow the embedded processor to read and write

configuration frames. For high-speed access, the processor can

configure DMA data tranfers to the PCAP to perform partial

reconfiguration operations. The UltraScale+ PCAP is 4B wide

with a peak operation of 200 MHz supporting up to 800 MB/s

[33, Chapter 8, Configuration Time].

Xilinx provides the xilfpga library [34] (Fig. 2) for

performing DMA bitstream transfers on Zynq UltraScale+

components. It allows full bitstream load and readback and
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BRAM Group

25
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BRAM 6

BRAM 5
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frame (2976 bits)

72b in 108

72b in 108

Fig. 3. Frame Organization for UltraScale+ BRAM Contents

partial bitstream load for .bit files that include a header of

control commands to the PCAP.

XBERT provides expanded versions of routines in the

xilfpga API (Fig. 2). xilfpga did not provide a par-

tial bitstream readback operation, so we modified the read

operation to take in both a frame address and number of

frames. XBERT also provides a version of write that takes

raw frame data and fills in the configuration commands to set

frame address and specify a write operation since these are

needed to turn raw frame data into a proper partial bitstream.

This expansion was necessary to support writes, since we are

generating our own frame set and do not have the bitstream

configuration command header normally produced by Vivado

when it produces a bitstream.

Due to lack of flow control, xilfpga readback operations

can only run reliably at a lower rate than the 200 MHz peak

operation (Sec. VI). The default configuration in the 2019.2

xilfpga release sets the clock down to 23.8 MHz for a

top throughput of 95 MB/s using the PCAP Clock Genera-

tor Configuration (PCAP_CTRL (CRL_APB) register). Our

experience suggests 150 MHz is likely to work reliably, for a

top throughput of 600 MB/s.

VII. COMPRESSING TRANSLATION TABLE

The logical-to-physical translation tables (Sec. III) can be-

come quite large. If we simply stored a 32b frame address

and a 16b bit position for each bit in a BRAM, the translation

table would be at least 48× larger than the total BRAM data

we hope to map. Fortunately, there is some structure. We don’t

need to store the frame for every bit when multiple bits are in

the same frame, as is typical. This can save a factor of 3.

To compress further, we exploit the way the bit positions

repeat among frames. To illustrate, let’s start by considering

the simple case of a single BRAM design. A single frame

will hold some number of logical words in its 144 bits. In the

case of a 72b-wide logical memory, this could be 2 logical

words; in the case of an 8b-wide logical memory, this could

be 16 logical words. Define Wframe to be this value (2 or 16

above). For each successive group of Wframe words, the offset

positions within the frame are the same, allowing us to algorth-

mically determine the frame offset (logical address/Wframe)

and reuse a single bit map for the (up to 144) bits in the

frame to the offset within the frame. For the case of this

single BRAM design, this means we only need to store one

frame address (the base) and (up to) 144 bit offset addresses

(could do with 12b for the 2976 bits in a frame, but we round

to 16b). So, we need at most 32+144×16=2336b instead of

48×36864=1.7 Mbits with no compression.

To be general, we must support the variety of ways that a

logical memory can be mapped to physical BRAMs. This can

mean multiple BRAMs organized in parallel to support the

logical word width (e.g. 8 BRAMs that each supply 4b of a

32b word), multiple BRAMs covering different address ranges

to handle deep memories (e.g. 2 BRAMs covering a 36x2048

memory where one handles addresses 0 through 1023 and an-

other handles addresses 1024 through 2047), or combinations

thereof. There are even cases where the component BRAMs

hold heterogeneous sub-widths and sub-depths (example in

Sec. III). So, the general compression case is more involved to

deal with these additional irregularities. Nonetheless, there is

regularity across frames that can be described algorithmically.

This allows us to generalize the single-BRAM observations to

form a general compression strategy. Using these observations,

we signficantly compress the translation tables (Tab. III).

VIII. ACCELERATED TRANSLATION

As we see in Tab. IV, once we speed up read DMA,

translation time is slow compared to DMA transfer times.

Even with pre-compiled tables, the code is still extracting

and inserting one bit at a time. We implemented a multi-bit

accelerated conversion where we pre-compute the impact of a

sequence of bits (e.g., a byte) in the word (or frame) to create

a vector of bits to be applied to the frame (or words) and store

them in a table.

for (int b=0;b<bytes_in_word;b++) {
uint8_t field=(logical>>(b*8))&BMASK;
physical|=table_lookup[b][field]; }

This reduces the processor cycles but demands larger transla-

tion tables. Our current implementation supports these trans-

lation tables for single-BRAM memories.

IX. EVALUATION

As illustrated in Sec. III and highlighted throughout the

paper, the size and performance of XBERT transfers are highly

design-dependent, API-usage-dependent, and impacted by our

optimizations. In this section, we evaluate the performance of

the API across several scenarios to concretely characterize the

performance implications of these various cases.

A. Methodology

Our experiments use Vivado 2018.3 including SDK. Embed-

ded ARM processor code is compiled -O3. Experiments are

performed on the Ultra96 v2 board that includes an XCZU3EG
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containing 216 RAMB36s. Designs are run on a bare metal

configuration. We integrated xilfpga source from 2019.2

due to bugs in the 2018.3 version of xilfpga.

A primary performance metric is effective throughput. Ef-

fective throughput accounts for that fact that the useful data is

only a subset of the data transferred in frames. For example, if

we only want the contents of one RAMB36 in an UltraScale+

device frame, we get 144 relevant bits per frame but must

transfer an entire 2976-bit frame.

To illustrate typical application scenarios, we include a

couple of complete designs. These give some indication of

how frames share BRAMs from multiple logical memories.

• Huffman—our Verilog design from Sec. III-F. It has

4 logical memories consuming 4 RAMB18s and 3,903

LUTs. Each logical memory fits in a single RAMB18.

• Rendering—the Rendering HLS benchmark from the

Rosetta Benchmark Suit [35]. It has 11 logical memories

consuming 41 RAMB36s, 9 RAMB18s and 11,109 LUTs.

Several memories are large, requiring many BRAMs.

Some memories have gaps where no bits are defined.

B. Results

1) Raw Bitstream Data Transfers: Tab. II shows raw bit-

stream transfer times and raw and effective throughputs. This

shows the DMA transfer performance and implications without

the time required for translation, which is separated out in the

next section. Note that accessing all the BRAMs in a frame

(single BRAM frame-set rows) provides the highest effective

throughput. Since most of the bits in a BRAM frame are

BRAM data bits, the effective bandwidth is over half the raw

bandwidth. Note that this effective bandwidth is higher than

a full bitstream read or write even when we care about every

bit of the BRAMs in all the BRAMs on the chip, since the

partial read is only reading frames that hold BRAM data.

2) Translation: Tab. III reports the translation table sizes

and times and effective throughputs for translating between

logical and frame representations.

Tab. III shows that we can reduce translation tables about

two orders of magnitudes, into the kilobyte range per BRAM

(Sec. VII). Compression slightly slows translation. Accelera-

tion (Sec. VIII) roughly halves translation time, while adding

tables that are about as large as the uncompressed tables. Seven

of the 11 memories in Rendering are single BRAM memories,

but those only account for 4% of the bits, so acceleration

makes small impact when translating all the memories.

3) BERT API Operation: Single Memory: Tab. IV summa-

rizes the performance reading and writing a simple 512×64

memory that fills a RAMB36 block. The first line shows the

default read speed (Sec. VI) with the second showing the

impact of increasing the PCAP DMA read speed to 150 MHz

(600MB/s). The third line shows the impact of compression;

in this case it slows down translation slightly. The fourth line

then shows the impact of acceleration, which roughly halves

the translation time.

The next three lines (labeled “Frameset”) look at trans-

fering all 12 memories that share the same set of frames.

The first case captures the total time when performing sep-

arate bert_read and bert_write operations on each

memory; this takes roughly 12 times as long as the single

BRAM case since it is just the sum of the individual times,

and it achieves the same bandwidth. The middle line uses

bert_transfuse to either read or write all 12 memories

in one operation; as a result, the DMA transfer time is

comparable to the transfer time in each of the individual

BRAM reads, while the translation time is almost 12 times

larger since each memory must be separately translated. Since

DMA transfer time was roughly comparable to translation time

in the single RAMB36 read or write, this results in roughly

double net throughput. The last of the frameset lines shows

the impact of performing a single transfuse operation that both

reads and writes all the memories.

The final line in the table shows reading and writing a single

frame (two 64b words) from the RAMB36. This takes less time

than reading or writing the whole memory and translating all

the frames. The translation time can be small here. However,

since there is considerable fixed time in setting up the DMA

operations, the net throughput is low.

4) BERT API Operation: Application Level: The single

BRAM and the transfuse of all the BRAMs in a frame set cases

in Tab. IV bracket expected typical performance. Tab. V shows

the transfuse performance on the applications when we read

or write all memories. Huffman shows a 2–3× improvement

with transfuse operations. Rendering shows little benefit, with

translation taking more time in the transfuse case, possibly

due to caching effects for the large frame memory it needs

to accommodate all memories. Since the dominant time is

typically in translation, total transfusion time is mostly linear

in the data being read and written.

X. CONCLUSIONS

The configuration path on modern FPGAs provides access

to embedded memories. In terms of FPGA resources, it is

a lightweight interface to get data in and out of embedded

memories. XBERT provides a user-level API that makes using

this capability lightweight for the application developer, as

well. With XBERT accessing a logical memory is as easy

as an API call. This is useful for loading initial memory

states at program startup, recovering final data and status at

program completion, debugging, and for infrequent data trans-

fers between the FPGA fabric and the embedded cores. The

XBERT API takes care of logical-to-physical translations and

includes optimizations to compress the necessary translation

information and to minimize the data that must be transferred

in and out of the FPGA. The XBERT tool flow automates the

generation of the translation information needed by the API.
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TABLE II
RAW BITSTREAM READ AND WRITE TIMES ON XCZU3EG

Raw Raw 1 BRAM Effective all BRAMs Effective
What Time Thput Thput Thput

(ms) (MB/s) bits (MB/s) bits (MB/s)

full bitstream read (24 MHz) 58.50 95.2 36,864 0.079 7,962,624 17.0
full bitstream read (150 MHz) 9.37 594.0 36,864 0.492 7,962,624 106.2
full bitstream write 8.34 667.6 36,864 0.553 7,962,624 119.3

single BRAM frame-set read (24 MHz) 1.01 87.2 36,864 4.560 442,368 54.7
single BRAM frame-set read (150 MHz) 0.20 477.8 36,864 23.000 442,368 276.5
single BRAM frame-set write 0.21 462.2 36,864 22.300 442,368 267.1

single BRAM frame read (24 MHz) 0.10 8.4 144 0.178 1,728 2.1
single BRAM frame read (150 MHz) 0.10 8.4 144 0.178 1,728 2.1
single BRAM frame write 0.10 9.7 144 0.178 1,728 2.1

“frame-set” is the set of 256 frames that contain the contents of a single BRAM (Fig. 3).
24 MHz is the read speed in xilfpga; 150 MHz is the highest speed we were able to reliablity run DMA readback.

TABLE III
TRANSLATION TIME ON XCZU3EG

Uncompressed Effective Compressed Effective Accelerated Effective
What Table Time Thput Table Time Thput Table Time Thput

Size (B) (ms) (MB/s) Size (B) (ms) (MB/s) Size (B) (ms) (MB/s)

frames→logical: single RAMB18 (x36) 148,832 0.38 6.1 2,128 0.49 4.7 126,920 0.25 9.2
logical→frames: single RAMB18 (x36) 148,832 0.43 5.4 2,128 0.50 4.6 126,920 0.18 12.8

frames→logical: single RAMB36 (x64) 263,520 0.61 6.7 2,352 0.79 5.2 243,808 0.40 10.2
logical→frames: single RAMB36 (x64) 263,520 0.71 5.8 2,352 0.84 4.9 243,808 0.37 11.1

frames→logical: all BRAMs Huffman 313,528 0.96 5.1 4,424 0.98 5.0 320,648 0.61 8.0
logical→frames: all BRAMs Huffman 313,528 1.00 4.9 4,424 1.16 4.2 320,648 0.35 13.9

frames→logical: all BRAMs Rendering 11,847,032 32.84 5.6 91,968 51.71 3.6 413,936 50.70 3.6
logical→frames: all BRAMs Rendering 11,847,032 38.07 4.9 91,968 51.64 3.6 413,936 50.64 3.7

TABLE IV
BERT API SINGLE RAM36 PERFORMANCE ON XZCU3EG

Read Write
Effective Clock Time Effective Time Effective

What Bits Freq. Trans. DMA Total Thrput Trans. DMA Total Thrput
(bits) (MHz) (ms) (ms) (ms) (MB/s) (ms) (ms) (ms) (MB/s)

Uncompressed 32768 24 0.61 1.22 1.84 2.22 0.71 0.25 1.04 3.92
Uncompressed (Sec. VI) 32768 150 0.61 0.42 1.03 3.94 0.71 0.25 1.04 3.91
Compressed (Sec. VII) 32768 150 0.86 0.45 1.32 3.08 0.87 0.27 1.21 3.37
Accelerated (Sec. VIII) 32768 150 0.39 0.45 0.85 4.81 0.28 0.27 0.62 6.59

Frameset, accelerated, separate ops 393216 150 4.67 5.41 10.13 4.85 3.72 3.35 8.10 6.06
Frameset, accelerated, transfuse 393216 150 3.71 0.45 4.18 11.74 3.71 0.46 4.18 11.75
Frameset, accelerated, transfuse 786432 150 Read and Write all → 6.27 0.70 7.00 14.03

Single Frame, accelerated 128 150 0.32 0.30 0.63 0.03 0.00 0.10 0.11 0.14

24 MHz is the read speed in xilfpga; 150 MHz is the highest speed we were able to reliablity run DMA readback.

TABLE V
BERT API APPLICATION PERFORMANCE ON XZCU3EG

Read Write
Effective Clock Time Effective Time Effective

What Bits Freq. Trans. DMA Total Thrput Trans. DMA Total Thrput
(bits) (MHz) (ms) (ms) (ms) (MB/s) (ms) (ms) (ms) (MB/s)

Huffman, accelerated, separate ops 38912 150 0.70 1.67 2.40 2.02 0.38 1.81 2.48 1.95
Huffman, accelerated, transfuse 38192 150 0.45 0.45 0.91 5.30 0.45 0.45 0.90 5.35
Huffman, accelerated, transfuse 77824 150 Read and Write all → 0.86 0.69 1.62 5.99

Rendering, acclerated, separate ops 1480192 150 43.08 7.05 50.19 3.68 45.98 7.41 54.50 3.39
Rendering, accelerated, transfuse 1480192 150 50.70 4.35 55.08 3.35 50.64 4.31 54.97 3.36
Rendering, accelerated transfuse 2960384 150 Read and Write all → 103.08 6.30 110.15 3.35

150 MHz is the highest speed we were able to reliablity run DMA readback.
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