
Research Article
Core-Level Modeling and Frequency Prediction for
DSP Applications on FPGAs

Gongyu Wang, Greg Stitt, Herman Lam, and Alan George

NSF Center for High-Performance Reconfigurable Computing (CHREC), Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32611-6200, USA

Correspondence should be addressed to Gongyu Wang; wangg@chrec.org

Received 3 March 2015; Accepted 10 August 2015

Academic Editor: Michael Hübner

Copyright © 2015 Gongyu Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Field-programmable gate arrays (FPGAs) provide a promising technology that can improve performance of many high-
performance computing and embedded applications. However, unlike software design tools, the relatively immature state of FPGA
tools significantly limits productivity and consequently prevents widespread adoption of the technology. For example, the lengthy
design-translate-execute (DTE) process often must be iterated to meet the application requirements. Previous works have enabled
model-based, design-space exploration to reduce DTE iterations but are limited by a lack of accurate model-based prediction of
key design parameters, the most important of which is clock frequency. In this paper, we present a core-level modeling and design
(CMD) methodology that enables modeling of FPGA applications at an abstract level and yet produces accurate predictions of
parameters such as clock frequency, resource utilization (i.e., area), and latency. We evaluate CMD’s prediction methods using
several high-performance DSP applications on various families of FPGAs and show an average clock-frequency prediction error of
3.6%, with a worst-case error of 20.4%, compared to the best of existing high-level prediction methods, 13.9% average error with
48.2% worst-case error. We also demonstrate how such prediction enables accurate design-space exploration without coding in a
hardware-description language (HDL), significantly reducing the total design time.

1. Introduction

Field-programmable gate arrays (FPGAs) combine flexibility
of software with performance of custom hardware, often
resulting in orders of magnitude speedup [1–3] and improved
energy efficiency [4–6]. Despite these advantages, FPGA
usage has been limited largely due to a requirement for
hardware expertise and relatively immature design flows. A
typical FPGA design flow follows a design-translate-execute
(DTE) methodology where the designer designs register-
transfer level (RTL) functionality, translates that functionality
into a circuit through synthesis, placement, and routing,
and finally executes the resulting circuit for verification or
performance analysis. One significant problem with this
approach is that design-space exploration (DSE) must iterate
over the lengthy DTE process, resulting in low productivity.
To optimize a design, the designer must reevaluate design
decisions,modify the code, retranslate the code, reexecute the
new circuit, and iterate until constraints are met. These DTE

iterations can require weeks or months of increased design
time [7, 8], because even if only minor change is made to the
code, placement and routing may take hours or even days.

As a solution to this problem, previous works [9–
14] introduced techniques for model-based, design-space
exploration before creating a functional design. As shown
in Figure 1, we refer to such exploration as formulation.
To perform formulation, a designer abstractly models an
application and makes predictions (e.g., [15]) that enable
rapid exploration of the design space. Instead of iterating over
DTE in search of good design choices, a designer using DSE
tools can iterate during formulation to identify the promising
designs before performing DTE. By reducing DTE iterations,
formulation has shown to significantly improve productivity
[16].

Current formulation tools [12, 15] model algorithm
implementation on FPGAs (i.e., FPGA applications) as a
black box and make performance predictions based on key
parameters of the model (e.g., clock frequency, area, and

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2015, Article ID 784672, 20 pages
http://dx.doi.org/10.1155/2015/784672

http://dx.doi.org/10.1155/2015/784672


2 International Journal of Reconfigurable Computing

Abstract representation

Performance prediction
and analysis

Write and debug code

Compile code into
executable format

Run application on
target platform

Performance analysis

DTE
iteration

Model-based
DSE iterationFormulation

Design

Translation

Execution

Figure 1: Formulation, design, translation, execution (FDTE)
model for FPGA application development.

latency), which are often provided by designers via estimation
or implementation. Although implementation can produce
accurate parameter values, it is time-consuming due to
lengthy placement and routing. Therefore, when using those
formulation tools, application designers typically settle for
crude parameter-estimation methods (e.g., use lowest fre-
quency among components as estimated frequency of entire
application). It is not uncommon that the crude estimations
fail to differentiate design choices or even favor inferior
designs over good ones. There is a need for better estimation
methods of the parameters to enable more accurate DSE and
more effective formulation.

To enable easier and more accurate parameter estimation
for FPGA applications, we introduce a core-level modeling
and design (CMD) methodology. By providing parameter-
prediction methods for models created from RTL cores,
CMDenablesmodeling of an FPGAapplication at an abstrac-
tion level thatmatches the required resources (i.e., core level),
using accurate parameters for each core. With such models,
CMD’s predictionmethods can produce accurate estimations
of parameters such as clock frequency, resource utilization
(i.e., area), and latency of an FPGAapplication, enabling core-
level DSE that evaluates various design choices and identifies
the favorable ones based on prediction results. Moreover,
CMD provides the generation of code templates and vendor-
tool frequency constraints to expedite design and translation.
The CMD methods are not limited to manual usage. They
can be automated and potentially integrated into any design
tools, including high-level synthesis tools. We have created a
prototype framework of tools that implements much of the
CMDmethodology.

A major research challenge of CMD is predicting the
timing characteristics of FPGA applications based on the
interconnection of coarse-grained cores. Although the timing
parameters of each core can be determined from datasheets
ormicro-benchmarking, the interconnection of the cores can
have a significant effect on the achievable clock frequency.
A key contribution of this paper is a core-level prediction
method of clock frequency, which considers the frequency
of each individual core and the effects introduced by their

placement and interconnection on an FPGA. Using several
high-performance DSP applications, our evaluation shows
that the average prediction error of CMD’s clock-frequency
prediction method is 3.6%, with the worst-case error of
20.4%. In comparison, the best of the existing high-level
predictionmethods shows an average error at 13.9%, with the
worst-case error of 48.2%. Latency/area prediction methods
are also presented and evaluated, which show 7% worst-case
error. Note that control-oriented tasks are not considered by
CMD because they are typically not on the critical paths of
DSP applications.

To demonstrate that CMD’s clock-frequency prediction
enablesmore accurateDSE, we present examples of core-level
DSE to show that it differentiates design choices and select
the optimal design in cases where other high-level methods
cannot. Moreover, we demonstrate the productivity benefits
from using CMD for formulation and show significant
development-time reduction for an example application.

In summary, the key contributions of this paper are
listed as follows. A core-level modeling and design method-
ology was introduced that enables the modeling of FPGA
applications at an abstract level and yet produces accurate
predictions of key design parameters such as clock frequency,
resource utilization (i.e., area), and latency. In particular,
a high-level clock-frequency prediction method has been
developed based on the core-level models of DSP applica-
tions on FPGAs. The accuracy of CMD’s clock-frequency
prediction method was evaluated using several typical DSP
applications, demonstrating better accuracy than existing
methods for high-level prediction. Thus, CMD methods
enable accurate design-space exploration without having to
code in a hardware-description language (HDL), significantly
reducing the total design time.

The remainder of the paper is organized as follows.
Section 2 presents related research. Section 3 presents
an overview of CMD and the prototype framework. Sec-
tion 4 discusses the details of the clock-frequency prediction
method of CMD. In Section 5, we present case studies for the
evaluation of the predictionmethods and discuss examples of
core-level DSE. Section 6 concludes the paper and discusses
future work.

2. Background and Related Research

This paper is an extension of a previous work [17], in which
we introduced the general core-level modeling and predic-
tion methods, core-level DSE, and constraint generation. In
addition to numerous refinements to the previous work, this
paper includes the following extensions: (1) improved clock-
frequency prediction method; (2) more thorough evaluation
with additional case studies; (3) comparison studies with
other high-level frequency prediction methods; and (4)
demonstrative example of CMD’s productivity benefits.

Current formulation tools, such as RAT [15] and RCML
[11, 12], focused on more abstract system-level modeling
and prediction. In those studies, FPGA algorithms and
components are generally modeled as black boxes and clock
frequencies are assumed for system-level performance pre-
diction. CMD models FPGA algorithms at the core level,



International Journal of Reconfigurable Computing 3

which is generally more detailed than the task level in
RAT and RCML, so that clock frequencies of the tasks can
be systematically predicted. CMD could work in tandem
with such system-level tools by providing accurate clock-
frequency predictions. For example, RAT’s performance-
prediction accuracy heavily relies on accuracy of the specified
clock frequency. CMD can help RAT to produce more
accurate performance prediction by accurately predicting
this frequency.

Mohanty and Prasanna [18] proposed kernel-level mod-
eling of FPGA algorithms, which is similar to CMD, but their
work focused on power-consumption prediction and did not
provide clock-frequency prediction methods. Xilinx System
Generator [19] shares the same abstract-modeling approach,
but, again, clock-frequency prediction is not provided. A
collection of modeling domains is defined and explored in
Ptolemy [20]. Ptolemy focuses on application design using
numerous models of computation, whereas CMD focuses
on a model common to FPGA applications (i.e., data flow).
Thus, CMD is unique in that it provides rapid model-based
frequency prediction during formulation, without having to
write any RTL code.

Strenski [21] provides a methodology to estimate the the-
oretical maximum Gflop/s for a given FPGA. However, that
approach estimates theoretical performance independently of
specific applications or circuits. CMDmodels algorithms and
predicts key parameters after mapping to FPGA.

Two distinct methodologies to predict frequency and
area for FPGA applications are presented in [22, 23]. The
former works at the level of configurable logic blocks (CLBs),
which is of finer grain than CMD’s typical cores. Thus,
more detailed hardware knowledge is required for modeling
and the prediction process is more time-consuming. The
latter works at the FPGA task level, which is generally more
abstract than CMD cores. Although easy to specify, such
abstraction provides less accurate parameter prediction. Also,
the algorithm’s structure is abstracted away to a simple set
of primitive operations. CMD models specific algorithm
structure as well as primitive operations but abstracts away
the low-level device (e.g., CLB) information. In this manner,
CMD can maintain similar prediction accuracy as [22] and
approximate the prediction speed of [23]. Aside from [22,
23], there are many other tools and studies that discuss
parameter prediction for frequency, area, latency, and power
of FPGAapplications.Those approaches base their prediction
approaches either on low-level FPGA primitives [24–29] or
onhigh-level statistical approximations [30–34]. CMDdiffers
by providing a flexible level of abstraction that can potentially
achieve the results of both approaches. However, CMD
currently does not support prediction of power consumption,
although such support could potentially be added.

A major contribution of this paper is a method for core-
level routing prediction. There are many previous studies in
this area, such as [35, 36]. CMD differs from those works in
three aspects. The first is that the inputs to the models are
of different granularity. For example, Das’s approach [35] is
based on technology-mapped netlists while CMD typically
works at a higher level of abstraction, while also potentially
supporting technology-mapped netlists. Thus, their analysis

methods cannot be applied to CMD’s model because many
input parameters that their methods require are not available
at CMD’s higher level of abstraction. In fact, one goal of CMD
is to hide low-level details.The second difference is that CMD
targets different types of designers. Previous studies [35, 36]
aim to help FPGA architects, whereas CMD helps FPGA
application designers. Thus, previous approaches mainly
consider exploration of potential FPGA architectures while
CMD focuses mainly on commercial FPGA architectures.
For example, FPGAs in Das’s paper [35] are assumed to
have no DSPs or BRAM blocks. The third difference is the
use of Rent’s rule [37]. Previous works such as [22, 35, 36]
use Rent’s rule on FPGAs with fixed lookup table (LUT)
as their basic block, while two works [35, 36] assume that
Rent’s exponent is available as a parameter and the other
[22] calculates Rent’s exponent empirically. CMD uses Rent’s
rule at a higher level of abstraction, treating a flexible core
as basic block and calculating Rent’s exponent for specific
applications. Moreover, in Das’s paper [35], Rent’s rule is used
in its original form to predict the number of pins, while CMD
uses it to predict average routing delay via Feuer’s work [38].
Feuer’s work is used in research (e.g., [39]) for wire length
estimation. CMD differs from that research by conducting
similar estimation on a higher abstraction level using 𝐾-
means partitioning heuristic.

High-level synthesis (HLS) tools such as GAUT [40],
Xilinx System Generator [19], and LabVIEW FPGA [41]
improve FPGA productivity by automatically performing
design-space exploration from high-level code. However,
such exploration is restricted by various coding styles, often
requiring designers to write an application in a specific way.
As a result, designers using HLS still must perform repeated
DTE iterations. Overall design time might be reduced by
HLS but translation can still take hours or days. There-
fore, formulation provides similar benefits even when using
HLS. Furthermore, it is possible to integrate CMD’s clock-
frequency prediction with HLS tools to enable improved
exploration.

3. Overview of CMD Methodology and
Prototype Framework

TheCMDmethodology supports core-levelmodeling, param-
eter prediction, core-levelDSE, and code-template/constraint
generation. Figure 2 shows the CMD concept diagram inte-
grated with the FDTE model from Figure 1.

Within the formulation stage, CMD has two major mod-
ules: core-level model construction and parameter prediction.
The inputs to the former are the application algorithm and
characteristics of the target FPGA platform, based on which
a model is produced and then used by the latter to predict
values of key design parameters (e.g., frequency, area, and
latency). Core-level DSE (DSE 1 and DSE 2 in Figure 2)
is enabled by evaluating various designs and selecting the
ones with predicted parameters that are satisfactory for a
design goal.The design goal can be singular (e.g., fastest clock
speed,minimum area, or lowest latency) or combinative (e.g.,
fastest clock with an area budget). We pick maximum clock
frequency as the example design goal in this paper, because it



4 International Journal of Reconfigurable Computing

Fo
rm

ul
at

io
n 

st
ag

e
D

es
ig

n 
st

ag
e

Core-level
model

construction

System-level
model

construction

App.
algorithm

Parameter
prediction

DSE 2
DSE 1

RC
platform

System-level DSE

Code-
template

generation
Coding and
verification

Legacy code

Tr
an

sla
tio

n 
st

ag
e

Constraint
generation

Implementation

Ex
ec

ut
io

n
sta

ge Executable with predicted
frequency, area, and latency

Debug/
performance

analysis
RC

application

SW/HW debug/optimization

Blocks are CMD related

Blocks are related to other tools

Figure 2: CMDmethodology and FDTE model (dotted lines indicate iterative processes).

App.
algorithm Parameter

prediction

DSE 1

RC
platform

SW/HW
partitioning

Device-
characteristics

extraction

Core-graph
creation Core-level

model

(a) (b)

(c)

Figure 3: Core-level model construction with (a) FPGA tasks, (b) core graph, and (c) device characteristics.

is a common goal for high-performance DSP applications on
FPGAs and core-level DSE for this goal is directly enabled
by CMD’s frequency prediction. Core-level DSE can be
performed manually or with automated techniques [42].

To bridge formulation into design and translation, CMD
provides code-template generation and constraint generation.
The former generates skeleton HDL code in the design
stage according to the core-level models. The latter provides
constraints to synthesis, placement, and routing tools in the
translation stage. Finally, the behavior andperformance of the
implemented design can be verified in the execution stage.

For proof of concept, we created a prototype framework
of tools that implements and automates much of the CMD
methodology. Although many of the individual modules of
CMD are automated in the prototype framework, interaction
between them currently requires manual effort, resulting in a
semiautomatic approach.

3.1. Core-Level Model Construction. Figure 3 illustrates the
core-level model construction module from Figure 2. The
inputs to the module are the application algorithm and
characteristics of the target FPGA platform. The first step of
core-levelmodel construction is SW/HWpartitioning, which
partitions out the tasks of algorithm to be implemented on
FPGAs. We refer to them as FPGA tasks. CMD does not

restrict techniques used for SW/HWpartitioning; it can be an
automated partitioning tool (e.g., [43]) or manual partition-
ing by designer. Note that design decisions are made during
SW/HW partitioning. So, DSE (DSE 1 in Figure 3) could
be conducted either manually by designers or automatically
usingDSE tools (based on some heuristics) to explore various
partitions in the search for better parameter values (e.g.,
higher clock frequency) using parameter prediction. After
partitioning, FPGA tasks are modeled through core-graph
creation; and device-characteristics extraction (e.g., device
infrastructure, basic-operation characteristics) is performed
on target FPGA devices in the platform. From device charac-
teristics, parameter values of the core graph are determined
to produce a core-level model.

3.1.1. Core-Graph Creation and Device-Characteristics Extrac-
tion. The core-graph models the algorithms of FPGA tasks.
Cores are basic elements of the core graph, which model
algorithmic operations. Cores have inputs/outputs (I/O),
which can be connected by directed links that model data
or control flows. Cores and their links form the core graph.
For example, a core graph for 3-input summation is shown
in Figure 4(a). Cores can be defined at various levels of
granularity. A designer can reduce modeling time by using
more abstract cores (e.g., one 3-input summation core instead



International Journal of Reconfigurable Computing 5

Add

Add

(a)

Re
g6
4

64b

64b
64b

64
b

Re
g6
4

Re
g6
4

Re
g6
464b

64b

Re
g6
4

Adder

Adder

Attributes:
freq. = 327MHz
3 DSPs, 1066 FFs

Attributes:
freq. = 302MHz
0 DSPs, 1582 FFs

Altera
Stratix-II

Xilinx
Virtex-4

15 or 14

Lat. = 15

Lat. = 14

Lat. =

(b)

Figure 4: (a) Core graph and (b) core-level model for 3-input DPFP summation.

of two add cores) at the risk of reduced prediction accuracy.
More abstract cores can also be defined by a core graph.Thus,
a designer/tool can employ hierarchical modeling to manage
large core graphs. Note that algorithmic design decisions
(e.g., operation selection, parallelism, and algorithmic struc-
turing) made by designers or tools are reflected in core-graph
creation (e.g., abstraction level of cores, amounts of core
replication, and selection of flat/hierarchical core graphs). So,
as shown in Figure 3, a designer/tool could perform DSE
(DSE 1) with core-graph creation.

Device-characteristics extraction involves core-instance
discovery, datasheet lookup, and micro-benchmarking. Core
instances are RTL entities with core-specified behavior and
device-specific parameters (e.g., clock frequency, area, and
latency/pipeline stages). Core instances can be any IP includ-
ing combinational logic, DSP math functions, finite-state
machines, and memories. Some core instances are provided
by device vendors and thus have documentation on their
achievable clock frequency, area, and latency for target
FPGA devices. If not documented, the core instances are
benchmarked to collect necessary parameter values. Either
way, an abstraction level is formed with core instances as
model elements, where a designer does not need to know
the internals of core instances other than the key parameters.
Note that design decisions (e.g., device selection, IP selection,
and tool selection) are reflected in device-characteristics
extraction (e.g., device selection, core-instance selection, and
benchmarking-tool selection). Thus, as shown in Figure 3, a
designer/tool could perform DSE with device-characteristics
extraction.

3.1.2. Core-Level Model. As shown in Figure 3, after core-
graph creation and device-characteristics extraction, a core-
level model is created by a designer/tool that maps each core
in the core graph to a core instance and assigns each link of
the core with bit width based on I/O data types of the core
instance. Design decisions are made by the designer or DSE
tool to determine the core instances to which the cores are
mapped. A common choice is to map cores to core instances

provided by device vendors or other trustworthy sources. For
example, an add core (shown in Figure 4(a)) is mapped to
a pipelined DPFP adder (core instance) provided by Xilinx
or Altera in order to create the core-level model shown in
Figure 4(b). DSE (DSE 1 in Figure 3) can be conducted to
explore mappings of add to different core instances (e.g., to
pipelined adders of various latencies).

Figure 4(b) shows a core-level model for the 3-input
summation example. The model consists of two types of
core instances: adder and register (labeled as Reg64). On
Xilinx Virtex-4 LX100 FPGA, frequency, latency, and area
(the number ofDSP slices andflip-flops (FF)) of the adder can
be determined using the floating-point-operator datasheet
[44] or Xilinx CORE Generator. Similarly, the parameter
values of the adder on an Altera Stratix-II S180 FPGA can
be found in [45]. Parameter values of the registers can also
be found in the datasheets. To achieve maximum clock
frequency, we decide to select the adder core instance with
deepest pipelining, whose parameter values on both FPGAs
are shown in Figure 4(b). No such option is available for
Reg64 and, thus, for brevity, their parameter values are not
shown in Figure 4(b).

The core graph and core-level model can potentially
be created with any appropriate modeling or programming
language. We leverage RCML [11] because it was created
specifically for modeling FPGA applications. The RCML
editor has been extended for editing core-level model and
integrated into the CMD prototype framework. The editor is
a drag-and-dropmodeling environmentwith a graphical user
interface similar to Simulink [46]. Using this tool, a designer
starts withmodeling the algorithm by graphically connecting
cores via links to form a core graph. Next, the designer
assigns each core and link with parameter values derived
from device-characteristics extraction. Automatic DSE tools
thatmap algorithm to core graph and assign parameter values
could potentially be added to the prototype framework.

3.2. Parameter Prediction. Figure 5 shows the details of the
parameter-prediction module from Figure 2, which uses the



6 International Journal of Reconfigurable Computing

Routing
estimationPlacement

Area, latency
prediction

Frequency
estimation

Core-level
model

construction

To app. alg. and RC platform
DSE 2

System-level
model

construction

System-level DSE

Clock-frequency prediction

(a) (b)

Figure 5: CMD parameter prediction with (a) placed core-level model and (b) estimated routing delay.

core-level model to estimate values of key parameters of an
FPGA application, such as clock frequency, area, and latency.
For latency prediction, latencies of core instances along each
path, from input ports to output ports, are summed to
produce the latency of that path. Similarly, area prediction
sums the resource utilizations of each core instance in the
core-level model to determine overall resource utilization.
CMD models assume that all resource sharing occurs within
a core instance as opposed to between instances. Given
accurate parameter values of cores, the accuracies of latency
and area prediction can be very high (to be shown in
Section 5.4). We have automated area and latency prediction
in the prototype framework.

Clock-frequency prediction is more challenging and thus
is divided into three steps. Firstly, placement estimation
assigns locations of the core instances on target FPGA based
on a placement heuristic. Next, based on the estimated
placement, CMD performs routing estimation to determine
routing delays. Finally, the estimated routing delays are used
to perform frequency estimation of the FPGA application.
Clock-frequency prediction is a major contribution of this
paper, the details of which are presented in Section 4.

Design decisions can be made by designer/tool dur-
ing placement estimation via the selection and tuning of
placement heuristic. Different placement heuristics work for
different design goals. As mentioned, in this paper we pick
the design goal of maximum clock frequency and hence a
heuristic for shortest distance is selected and tuned, as dis-
cussed in Section 4.We note that placement estimation is also
applicable to other design goals by selecting corresponding
placement heuristics.

The clock-frequency prediction method can be auto-
mated and integrated in the prototype framework. However,
because its automation requires significant effort, we manu-
ally perform the steps of the frequency predictionmethod for
evaluation purpose and discuss how it can be automated in
Section 4.

3.3. Code-Template Generation and Constraint Generation.
As shown in Figure 2, besides core-level model construction
and parameter prediction, CMD also includes the following:
core-level DSE, code-template generation, and constraint
generation. Design choices exposed by CMD for core-level
DSE were discussed in the previous sections.

CMD can generate code template from the core-level
model to inherit design decisions, such as types of cores and
core-graph structure, as determined during core-level DSE.
We can potentially integrate existing code-generation tools

[47–49] into the CMD prototype framework but currently
implemented a simple code-template generator within the
CMDmodel editor for DSP applications.

Constraint generation creates frequency constraints that
can reduce the number of translation iterations required
to obtain maximum frequency. The generated frequency
constraints are determined by the predicted frequency plus
and minus some slack to account for the noise phenom-
ena of the place-and-route process [50]. This phenomenon
suggests that high frequency constraint can still be met if
a circuit fails a lower constraint and more surprisingly low
frequency constraint can sometimes produce faster circuit
than higher ones.Thus, a range of frequency constraintsmust
be tested in search of the one that produces the maximum
frequency. The predicted frequency saves designers time to
achieve maximum frequency because it provides a good
starting point for the search and thus shortens the range
of frequency constraints required to achieve the maximum
frequency. Otherwise, designers would usually have to guess
at a starting frequency constraint and search a much wider
range. Note that frequency constraints are commonly used
for timing-closure application development. The place-and-
route process without frequency constraints usually produces
circuits with modest frequency, which is not due to the noise
phenomenon but tool configuration.

We perform the frequency search using two methods.
One method performs exhaustive search over a range of
frequency constraints with numerous place-and-route jobs
executing in parallel on a high-performance computing
cluster. The other method uses a binary search to reduce
the total number of place-and-route iterations on a single
computer. The binary search starts by selecting a range of
low and high frequencies [𝐿,𝐻] and running place-and-route
with (𝐿 + 𝐻)/2 as the frequency constraint. After finding the
resulting frequency 𝑅, the search continues with a range of
[𝑅,𝐻] if the original constraint wasmet and [𝐿, 𝑅] otherwise.
These steps are repeated until the range is narrower than
5MHz. Note that the binary search can be trapped at a local
maximum to produce lower frequencies than the exhaustive
search (an examplewill be shown and discussed in Section 5.3
over a distribution plot of constraints versus maximum
frequency). However, using the CMD-generated constraints,
binary search can quickly produce acceptable results and is
useful when exhaustive search is not affordable.

Both frequency-search methods are automated and inte-
grated in the prototype framework. They can both work
with the generated frequency constraint and reduce the time
needed to find the maximum frequency.



International Journal of Reconfigurable Computing 7

(b)

(a)

(c)

Add

Add

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult
Add

Add

Add

Add

Add

Add

Add

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

M
an

ha
tta

n 
di

st
an

ce

Manhattan distance

Manhattan distance

Reg
64

Reg
64

Reg
64

Reg
64

Reg
64

Reg
64

Reg
64Reg

64
Reg
64

Reg
64

Reg
64

Reg
64

Reg
64

Reg
64

Reg
64

Reg
64

Reg
64

Reg
64

Core instance A

Core instance B
Average

Manhattan distance
between A and B

Shortest
Manhattan distance

between A and B

Figure 6: Placement estimation of core instances for the following: (a) generic case, (b) DPFP summation, and (c) 8-tap FIR filter.

4. Clock-Frequency Prediction
Method of CMD

As noted in Section 3.2, clock-frequency prediction is the
most challenging parameter-prediction method and it con-
sists of three steps: placement estimation, routing estimation,
and frequency estimation, as shown in Figure 5. In this
section, we present details of each step.

4.1. Placement Estimation. The placer in CMD estimates
vendor-tool placement of an application by placing each
core instance on target FPGA. Although estimating exact
placement is usually not feasible, core-level placement allows
for quick estimation by only considering core instances as
opposed to hundreds of thousands of technology-mapped
units (e.g., LUTs and registers).

Placement estimation can potentially use any place-
ment algorithm, but it currently uses a modified simulated-
annealing heuristic based onVersatile Place and Route (VPR)
[51]. This heuristic considers random core placements to
minimize a cost function based on the bounding-box size
of each net (i.e., core-instance link) and the capacities of
routing channels within the bounding box. Because max-
imum frequency is the design goal, the heuristic places

linked core instances close to each other to minimize the
distances between them. The distance between a pair of
linked core instances is defined as the Manhattan distance
[38] between their bounding boxes, as shown in Figure 6(a).
With the maximum frequency as the design goal, we use
the shortest Manhattan distance between a pair of connected
core instances instead of the average distance in the cost
function. Note that though these two kinds of distancemetric
are both applicable in the cost function, shortest Manhattan
distances are used for frequency estimation (to be explained
in Section 4.3), as one of the factors that contribute to
predicted frequency.

For the case studies presented in Section 5, we manually
conduct placement estimation using vendor floor-planning
tools, imitating the VPR algorithm, for the purpose of
evaluation.Also,we assume that each core instance has a fixed
rectangular shape with minimum length difference between
its width and height. For core instances using only logic,
the corresponding shape is a square. In other cases, a core
instance is shaped by the layout of specialized units and
cannot be a square (e.g., a core instance with DSP blocks that
are laid out in a line). Changing aspect ratio may provide
more accurate predictions. However, based on this evaluation
methodology,we have observed that theVPR-style placement



8 International Journal of Reconfigurable Computing

Attributes:
freq. = 397MHz
4 DSPs, 254 FFs

Attributes:
freq. = 397MHz
4 DSPs, 254 FFs

Attributes:
freq. = 378MHz
0 DSPs, 588 FFs

Attributes:
freq. = 378MHz
0 DSPs, 588 FFs

Altera
Stratix-II

Xilinx
virtex-4

MultMultMultMultMultMult MultMult

Add

Add

Add Add Add

Add
Add

Re
g3
2

Re
g3
2

Reg32

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

32b

3
2b

32b
32b

32b

Lat. = 10

Lat. = 13

Lat. = 10Lat. = 13

Figure 7: Core-level model of SPFP 8-tap FIR filter.

provides reasonably accurate clock-frequency predictions
(results to be shown in Section 5).

For the DPFP summation example with Xilinx Virtex-
4 LX100 device from Figure 4, where adders use DSP units
of the FPGA, we place the two core instances of adders over
the FPGA’s DSP columns. For maximum frequency, the core
instances are placed so that the distance between them is
as short as possible. In this example, the distances between
connected core instances are minimal due to placement
shown in Figure 6(b). On the Stratix-II S180 device, adders
consume no DSP units, which mean easier manipulation of
their location and distance to maintain minimal distances
between the core instances. However, it is not always possible
to keep the distance between connected core instances to a
minimum. Figure 6(c) shows a placement of the core-level
model of an 8-tap single-precision floating-point (SPFP) FIR
filter (its core-level model is shown in Figure 7) and this
placement has nonzeroManhattan distances between several
pairs of connected core instances. Note that relative sizes
of the core shapes in Figure 6 are determined by resource
utilization parameters of the core instances. Also note that
multipliers in Figure 6(c) are arranged on top of the DSP
columns of the target FPGA.

Our placement estimation approach is different from the
placement algorithms of vendor tools. To compare results,
we use the vendor’s floor-plan tools to check vendor-tool
placement of case-study applications against the core-level
placement estimations. We have observed that core-level
placement is similar to vendor-tool placement for small
applications (DPFP summation and SPFP 8-tap FIR). For
larger applications, it is hard to decide the similarities because
low-level elements (e.g., LUTs) of core instances are sprin-
kled within a region due to low-level optimizations during
technology mapping and low-level placement. However, our
clock-frequency prediction is reasonably accurate for all

B1

B2

B3

B4

B5

B6

Region 1

Region 2

Region 3 Region 4

Region
pin

Figure 8: Example partition of a logic block diagram with 6 blocks
(B1–B6).

case-study applications (to be shown in Section 5), which
suggests that the presented placement estimation approach
sufficiently mimics device-vendor tools. If vendor-tool place-
ment changes significantly in future versions or for future
FPGAs, then the placement heuristic used by CMDwill need
to change accordingly.

4.2. Routing Estimation. CMD routing estimation predicts
routing delay for a specified placement estimation. In Sec-
tion 2, we have noted that previous approaches [22, 23] to
this problem assume certain abstraction levels and hence do
not support CMD’s flexible level of abstraction.Therefore, we
leverage Rent’s rule [37] and Feuer’s [38] work to create a new
approach to estimate routing delay and then clock frequency
at the core level.

Given a connected logic block diagram and a partition of
this diagram into regions, Rent’s rule states that a relationship
exists between 𝑃, the average number of pins per region, and
𝐵, the average number of blocks per region. An example is
shown in Figure 8, in which a block represents a logic circuit,
such as a logic gate, a storage element, register, and integrated



International Journal of Reconfigurable Computing 9

circuit chip. This relationship is generally represented by the
following equation:

𝑃 = 𝐾𝐵
𝑝
, (1)

where 𝐾 is the average number of pins per block and 𝑝 is
a small exponent that satisfies 0 < 𝑝 < 1. The value of
𝑝 depends on the structure and partitioning of the block
diagram. Given a partition of a block diagram, we can
calculate 𝑃, 𝐾, and 𝐵 and then by using (1) we can derive 𝑝.
The example in Figure 8 has 4 regions of blocks, where region
1 has 2 blocks and 3 pins, region 2 has 1 block and 3 pins,
region 3 has 2 blocks and 4 pins, and region 4 has 1 block and
4 pins. Thus, we can calculate that 𝑃 equals (3 + 3 + 4 + 4)/4
and 𝐵 equals (2 + 1 + 2 + 1)/4 for this example. Similarly,
𝐾 is calculated to be (3 + 3 + 3 + 3 + 3 + 4)/6. Applying
𝑃 = 14/4, 𝐵 = 6/4, and 𝐾 = 19/6 to (1) yields an instance
of 𝑝 ≈ 0.247 for the given partition. However, to extract
general Rent’s exponent 𝑝, a calculationmethod that involves
linear-regression fit in a log-log plot of 𝑃 and 𝐵 values at all
partitioning levels is required [52].

Inserting derived Rent’s exponent 𝑝 into Feuer’s work
[38], we can predict averagewire length, 𝑟, internal to a circuit
region using the following equation:

𝑟 = √2 ⋅ 𝛿 ⋅
(2 − 𝛼) (5 − 𝛼)

(3 − 𝛼) (4 − 𝛼)
⋅
𝐶
𝑝−1/2

1 + 𝐶𝑝−1
, (2)

where 𝛼 = 2 − 2𝑝 (1/2 < 𝑝 < 1 as required in [38]),
𝛿 is the unit wire length, and 𝐶 is the number of blocks
in a given region. This equation is derived from several
basic assumptions stated in [38]. These assumptions (e.g.,
circuit components are arranged in a uniform array), though
appearing unrealistic for generic circuits, suit the scenario of
FPGA circuits, which share common underlying structures
(i.e., the FPGA fabric). Now we find the unit wire delay for
an FPGA fabric, which is simply the delay between a pair of
adjacent routing matrices. Note that the delay within such
routing matrices is far greater than that of the connecting
wires between them. Therefore, for FPGAs, we can replace
unit wire length 𝛿 in (2) with the delay of two adjacent routing
matrices Δ and derive the following equation that estimates
the average routing delay of an FPGA circuit region:

RD = √2 ⋅ Δ ⋅ (2 − 𝛼) (5 − 𝛼)
(3 − 𝛼) (4 − 𝛼)

⋅
𝐶
𝑝−1/2

1 + 𝐶𝑝−1
. (3)

Similar to (2), this equation accounts for all routing delays
internal to the region characterized by 𝐶 (i.e., number of
blocks in the region) and produces an average delay. If a wire
has extra delay caused by routing congestion, the portion of
the wire that is internal to the region is also considered in
(3). Note that routing congestion is the result of the length
of a routed wire being longer than the Manhattan distance
between its endpoints. Also note that routing-matrix delay Δ
can be derived from FPGA vendor tools. Refer to Section 5
for the measured values of Δ for the target FPGAs in the case
studies.

Applying Rent’s rule and (3) to a placed core-level model,
we can predict the routing delay without resorting to actual

routing. Our approach is summarized in Figure 9. Firstly,
routing estimation partitions the placed core-level model
into a number of regions. We initially consider the original
𝐾-means clustering algorithm [53] to create the desired
partitioning algorithm, in which we use 𝑖 as the cluster
index (𝑖-means). In addition to the cost function of 𝑖-means
clustering, we also consider two cost functions for fast
partition evaluation:min-cut andmax-cut of number of links
for a partitioning. After experimenting with the original 𝐾-
means clustering, min-cut and max-cut, we have observed
that though all three partitioning algorithms produce com-
parable results,𝐾-means clustering withmax-cut arrived at𝑝
larger than 1/2 with the least number of partitioning regions.
Recalling that (3) only accounts for routing delay internal to a
region, fewer regions mean that more routing congestion can
be integrated into the prediction.

As shown in Figure 9, after partitioning the placed core-
level model, routing estimation calculates an instance of
Rent’s exponent 𝑝 based on the specific partitioning by plug-
ging𝑃,𝐾, and𝐵 values of the partition into (1). Asmentioned
earlier, the rigorous method [52] to calculating 𝑝 can be
time-consuming. Thus, in order to improve the calculation
speed, CMD’s routing estimation uses a simplified method
(as introduced in [39]) to find an acceptable approximation to
actual Rent’s exponent. Using this method, a certain number
of partitioning samples (e.g., 9 samples in [39]) are collected
including their values of 𝑝, log𝑃, and log𝐵. Once enough
samples are collected, a linear-regression fit is conducted over
the collected log𝑃 and log𝐵 values to derive the approximate
𝑝 value. If this 𝑝 value is not larger than 1/2, CMD’s routing
estimation goes back to partitioning the core-levelmodel into
more regions. If the resulting 𝑝 is larger than 1/2, routing
estimation moves on to calculate the routing delay RD𝑖 for
each region 𝑖 of the partitions by inserting 𝑝 value and the
number of core instances in the region (𝐶𝑖 value) into (3).
RD𝑖 will then be used to predict frequency of the entire
design. If 𝑝 is not larger than 1/2 for every 𝑖 (𝑖 = 2, . . . , 𝑁)
where 𝑁 is the total number of core instances in the model,
we assume that the average wire lengths in the regions are
short and they have negligible routing delays for core-level
prediction. This assumption is based on the work of Christie
and Stroobandt [52]. They point out that the amount of
optimization achieved in placement is reflected by Rent’s
exponent 𝑝 and lower values of 𝑝 correspond to a greater
fraction of short interconnects.

Note that our partitioning algorithm is inspired by
previous research [36, 39]. It is concluded in [36] that
random-partitioning algorithms based on center-and-radius
parameters produce statistically more accurate and stable
Rent’s exponent values. 𝐾-means clustering is a random-
partitioning algorithm based on a center and amean distance
to the center. Moreover, our Rent’s exponent calculation
method is similar to the placement-based method in [39]
but we experimented with smaller number of samples (𝑗 in
Figure 9). In the extreme case, 𝑗 can be set to 1 and Rent’s
exponent is approximated by 𝑝 instance of a specific parti-
tioning. Our case-study results (to be shown in Section 5)
show that the approximation approach with 𝑗 equal to 1
is reasonably accurate and also produces prediction results



10 International Journal of Reconfigurable Computing

Partition
core-level model

into i regions
(i = 2, 3, . . . )

Calculate p
instance

Collect jth sample:

Negligible
wire

length

Calculate
approx. rent
exponent p

Yes

Yes

Yes

No

No

No

Reset j
i = i + 1;
j = j − 1

i ≥ N?

j ≤ 0?

p < 1?1/2 <

p, logP, logB

Use (3)

Figure 9: CMD routing estimation flow (𝑁 = total number of core instances).

faster because the linear-regression fit is skipped. However, it
should be noted that users of CMD should consider using 𝑗 =
9 or the generalmethod (as in [52]) to calculatemore accurate
Rent’s exponent if the prediction results start to show large
errors. Finally, note that we conduct partitioning and Rent’s
exponent calculation based on the placed core-level model
because Yang et al. [39] concluded that placement-based
Rent’s exponent produces more accurate wire length estima-
tion than Rent’s exponent based on netlist-partitioning.

To demonstrate the routing estimation method, consider
the 8-tap FIR filter example shown in Figure 6(c). Our
partitioning algorithm determines that the two-region par-
titioning is able to derive an acceptable approximation of
Rent’s exponent, with one region containing all multipliers
and connected registers and the other region containing
everything else. Following the rest of the estimation flow,
routing delay internal to the former region is estimated to
be 0.495 ns, and routing delay internal to the latter region is
estimated to be 0.405 ns.

Now we explain how the same partition would not work
for the same circuit on a Stratix-II S180 FPGA. Stratix-
II S180 has 4 columns of DSPs and, as a result, the core
instances are placed as shown in Figure 10. For the 2-region
partition shown in Figure 10(a), approximate Rent’s exponent
is calculated to be 0.345, which is lower than 0.5. Our
partitioning algorithm continues working until it finds the
3-region partition shown in Figure 10(b), which produces
approximate Rent’s exponent of 0.526. Using (3), the average
routing delay internal to the region that contains all adders is
estimated to be 0.288 ns.

Routing delay estimation does not account for the Man-
hattan distance across regions or the delay within core
instances. To predict frequency of a core-levelmodel, we need
to consider all three factors, as discussed in the following
section.

4.3. Frequency Estimation. Frequency estimation predicts the
maximumclock frequency of themodeled FPGAapplication.
CMD considers two types of delay: type-1 delay associated

with the shortest Manhattan distances between all pairs of
linked core instances and type-2 delay caused by regional
routing. Type-1 delay is determined in the placement esti-
mation stage. Manhattan distance can be measured by the
number of routing matrices on the connecting nets. CMD
uses this measurement combined with Δ to produce type-
1 delay estimation. Type-2 delay is determined in routing
estimation stage, as described in the previous section.

Type-1 delay is associated with a pair of linked core
instances. If it is not zero, it could affect the frequency of
both core instances. CMD calculates this effect by adding
type-1 delay of a core-instance pair to the delay of a single
pipeline stage (the inverse of pipeline frequency) of the slower
core instance in the pair. Type-2 delay is associated with
partitioning regions. Each region can contain many core
instances. CMD calculates the resulting frequency by adding
type-2 delay of a region to the delay of single pipeline stage
of the slowest core instance within the region. Note that
type-1 and type-2 delays are considered separately but not
cumulatively. During the process of frequency estimation,
CMD stores resulting frequencies from type-1 delays and
the ones from type-2 delays in one sorted list from low to
high. After all the computation is done, CMD uses the lowest
frequency in the list as the predicted frequency. The reason
why we use this approach is discussed after showing the
following examples.

For the DPFP summation example in Figure 4(b),
given the placement shown in Figure 6(b), CMD estimates
maximum frequencies as 327MHz for Virtex-4 LX100 and
310MHz for Stratix-II S180. These are the same as the max-
imum frequencies of DPFP adders on both FPGAs because
the models’ type-1 and type-2 delays are zero.

For the 8-tap FIR filter example, we need to look at the
two-target FPGAs separately. On Virtex-4 LX100, as shown
in Figure 11, type-1 delay of the model is 0.5 ns between the
registers (500MHz) and two pairs of adders; type-2 delay of
the left region is 0.495 ns and is 0.405 ns for the right region.
The slowest core instance is the 378MHz adder. Out of the
three possible delay values associated with the adders, 0.5 ns



International Journal of Reconfigurable Computing 11

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Reg32

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Add

Add Add

Add

Add

Add

Add

(a)

Reg32

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Add

Add

Add

AddAdd

Add

Add

(b)

Figure 10: Placement and partitioning of 8-tap FIR filter on Stratix-II S180 into (a) two regions and (b) three regions.

produces the lowest resulting frequency. Therefore, 0.5 ns is
added to the delay of the 378MHz adder, and its frequency is
adjusted to 317MHz:

317MHz = 1
1000
× (0.5 ns + 1000

378
MHz) , (4)

which is the final predicted frequency. Similarly, on Stratix-II
S180, type-1 delay of the model is 0.8 ns between the registers
(450MHz) and is 0 ns between all other pairs, given the
placement in Figure 10(b). Note that although a link between
the registers looks long, it is placed at long tracks available on
the device and thus it only passes through two pairs of routing
matrices. Type-2 delay is 0.288 ns for the region that contains
all adders (350MHz).Therefore, 0.288 ns is added to the delay
of adder and its frequency is adjusted to 317MHz:

317MHz = 1
1000
× (0.288 ns + 1000

350
MHz) , (5)

which is also the final predicted frequency of the FIR filter.
Note that though a pair of registers has 0.8 ns delay in
between, their adjusted frequency is higher than 317MHz:

1

1000
× (0.8 ns + 1000

450
MHz) = 330MHz

> 317MHz.
(6)

Two key choices are made in creating CMD’s frequency
prediction method. The first is that we chose the short-
est Manhattan distance instead of the average distance to
estimate type-1 delay, which may seem too optimistic. Our
rationales are as follows: (1) it is realistic to assume that
all I/O ports of a core instance are located near its block
boundary; (2) it is possible that the critical path is of shortest
Manhattan distance, among all paths that connect two core
instances; (3) optimizations available at lower abstraction
levels in vendor tools greatly overachieve predicted frequency
from average-distance type-1 delays such that the average-
distance estimation could be too pessimistic; and (4) the



12 International Journal of Reconfigurable Computing

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2 Re

g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Mult

Add

Add

Add

Add

Add

Add

Add

0.
5

ns
 ty

pe
-1

de
la

y

0.
5

ns
 ty

pe
-1

de
la

y

0.495ns
type-2
delay

0.405ns
type-2
delay

Figure 11: Type-1 and type-2 delays of 8-tap FIR filter on Virtex-4
LX100.

chances of being too optimistic by predicting from shortest-
distance type-1 delay are reduced by consideration of type-2
delay.

The second key choice we made is to predict frequency
from type-1 delay and type-2 delay separately and then pick
the lowest predicted frequency as the final prediction. The
reason for considering 2 types of delays separately is to avoid
the weaknesses of either. Type-1 delay prediction does not
account for routing congestion. Type-2 delay prediction can
account for congestion but can only produce average routing
delay within regions. By storing resulting frequencies from
both types of prediction and choosing the lowest one, we aim
to avoid bad prediction in the following situations: (1) all links
among core instances are short except for one super-long link
that is not caused by congestion; or (2) all core instances
are placed close to each other but the routing congestion is
severe. In the first situation, since almost all links are short
and there is no congestion, the type-2 delay is short. However,
the super-long link would in some cases make the entire
circuit run slowly especially when it is on the critical path.
If we were to use type-2 delay only, our prediction would be
too optimistic. In the second situation, since all core instances
are placed close to each other, their Manhattan distances are
short and type-1 delays are negligible. However, it is possible
that this tight placement incurs routing congestion, which
is not accounted for by type-1 delay prediction. We would

be too optimistic if we only considered type-1 delay in this
case. According to our case studies (results to be shown
in Section 5), the mixed approach using both type-1 and
type-2 delays produces accurate predictions, despite the high
abstraction levels of the core-level models.

Currently, CMD only handles synchronous circuits in a
single clock domain. It can be extended to multiple clock
domains by performing the estimation of placement and
routing delays in each domain.

5. Case Studies, Results, and Discussion

In this section, case studies are presented to verify the
accuracy of clock-frequency prediction.We also demonstrate
how CMD’s accurate frequency prediction facilitates core-
level DSE through an example and discuss productivity
benefits of using CMD for formulation and design.

5.1. Case-Study Devices and Tools. The target devices for case
studies are DSP-rich FPGAs selected from Xilinx and Altera
across three generations: Virtex-4 LX100, Virtex-6 LX130,
andVirtex-7VX330T fromXilinx and Stratix-II S180, Stratix-
IV S40, and Stratix-V GSD3 from Altera. Note that the target
devices from Xilinx are of speed grade 1 and the devices
from Altera are of speed grade 3, because FPGAs of those
speed grades are well documented. Also note that Virtex-4
and Stratix-II are old devices but they are still used for DSP
applications in various fields (e.g., aerospace).

ISE andQuartus II tools are used for synthesis, placement,
and routing for the verification case studies. The settings
of the tools are selected to maximize the effort level to
achieve the highest possible clock frequency, including global
optimization, retiming, and the speed optimization strategy.

As discussed in Section 4.2, the delay of a pair of switch
matrices for each case-study device is needed for routing
estimation. Timing analyzers of both vendor tools are used to
empirically determine this delay. The results are summarized
in Table 1.

5.2. Case-Study Applications and Core-Level Models. The
case-study applications are from the domain of high-
performance DSP applications because of their growing
popularity and common implementation on FPGAs. Eval-
uation of CMD in other application domains (e.g., control-
intensive applications) is an interesting topic for future work
as identified in Section 6.

Six case-study applications are selected: (1) the DPFP
summation example with its core-level model shown in
Figure 4(b); (2) the 8-tap SPFP FIR filter example with its
model shown in Figure 7; (3) 4 × 4matrixmultiplicationwith
its model shown in Figure 12(a); (4) an implementation of N-
body simulation with model shown in Figure 12(b); (5) a 96-
tap SPFP FIR filter that fills up the smallest targeted device;
and (6) an infinite-impulse response (IIR) filter with SPFP
data paths with model shown in Figure 12(c). Note that the
96-tap FIR is similar to the 8-tap FIR in structure, only with
more cores. Also note that the IIR filter has an 8-tap feed-
forward part (the same as the 8-tap FIR filter) and an 8-tap
feedback part that features a long feedback data path.



International Journal of Reconfigurable Computing 13

Table 1: Switch matrix (SM) delay of select FPGA families.

Virtex-4 Virtex-6 Virtex-7 Stratix-II Stratix-IV Stratix-V
SM delay 0.5 ns 0.35 ns 0.175 ns 0.4 ns 0.25 ns 0.175 ns

Table 2: Parameter values for selected core instances in case studies.

Parameters
Mult Add FLT FIXED FIXED FLT

Xilinx Altera Xilinx Altera Xilinx Altera Xilinx Altera

Frequency
(MHz)

397 429 504 400 431 605 378 450 652 375 499 714 354 503 498 240 410 639 482 550 600 445 462 653

DSP usage 4 2 2 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FF usage 254 183 36 1125 391 293 588 557 221 902 678 902 289 256 66 379 361 379 227 201 224 345 371 345
Latency
(cycles)

10 8 8 11 11 11 13 12 12 14 14 14 6 6 6 6 6 6 7 7 7 6 6 6

First column of Xilinx is for Virtex-4 LX100, second is for Virtex-6 LX130, and third is for Virtex-7 VX330T.
First column of Altera is for Stratix-II S180, second is for Stratix-IV S40, and third is for Stratix-V GSD3.

These applications are selected for case studies for two
reasons: (a) they contain common algorithmic structures that
represent a wide range of DSP applications on FPGAs; and
(b) they are floating-point applications that have lengthier
place-and-route process than their combinational or fixed-
point counterparts and hence can benefit more from CMD’s
clock-frequency prediction and core-level DSE.

In the core-level models of case-study applications, most
core instances are provided by the vendors and thus their
parameter values (e.g., maximum frequency, latency, and
area) can be found in datasheets such as [44, 45]. The 8-tap
FIR filter, matrix multiplication, IIR filter, and 96-tap FIR
filter have multipliers and adders whose parameter values
are shown in Table 2. In the core-level model of N-body
simulation, for clarity of presentation, most core instances
are combined into a high-level one (shown in Figure 12(b)
as force calculation), except for three types: FLT FIXED,
FIXED FLT, andAccum. FLT FIXED converts floating-point
data to fixed point and FIXED FLT converts fixed point to
floating point. Their parameter values are shown in Table 2.
Accum is a fixed-point core instance, whose parameter values
are derived from benchmarking its VHDL code for all target
devices (e.g., maximum frequencies: 500MHz for Virtex-4;
450MHz for Stratix-II; 600MHz for Virtex-6; 550MHz for
Stratix-IV; 625MHz for Virtex-7; and 717MHz for Stratix-
V). Most core instances in the applications have registers at
their I/O ports, which are not required but are often used for
pipelined DSP applications on FPGAs. Thus, we choose the
same style for modeling in order to achieve high prediction
accuracy. Also, most core instances are highly optimized with
retiming, register duplication, and so on, for the design goal
of maximum frequency. CMD currently does not consider
retimingwithin the cores, whichmeans that register cores can
be added/moved in between cores but not within cores.

Note that the case-study applications are written in
VHDL by designers who are unfamiliar with CMD. Also,
design decisions (such as selection of core instances) are

made by the designers for maximum frequency based on
their design experiences. Also note that although the case-
study applications are based on VHDL, core instances can be
IPs generated from HLS tools. Moreover, we focus on data
paths and omit control logics (i.e., finite-state machines) in
core-level models of the case-study applications, because the
critical paths of these applications are the data paths. This
is typical for high-performance DSP applications on FPGAs
since the data paths are commonly much larger than the
control logics due to replication for parallel high-throughput
processing.

5.3. Verification of Clock-Frequency Prediction. To verify the
accuracy of CMD’s clock-frequency prediction method, for
each case-study application, we compare CMD’s predicted
frequency against the maximum frequency of the VHDL
implementation, which is determined using the exhaustive
frequency-search tool described in Section 3.3 to thoroughly
explore a wide range of possible frequency constraints at
increments of 1MHz. Note that this exhaustive search over
a wide range of frequency constraints is only necessary
for verifying frequency predictions and is not required by
the prediction process. Figure 13 shows an example of the
exhaustive frequency search for the 8-tap SPFP FIR filter
(with constraint range [300MHz, 330MHz] zoomed). The
necessity of searching every frequency constraint in a certain
range is shown because a high frequency constraint (e.g.,
319MHz in Figure 13(a)) can still be met even if a lower
one (e.g., 316–318MHz in Figure 13(a)) is not, due to noise
phenomena in FPGA routing [50]. Other case studies show
similar results and hence are omitted for brevity. It is also
possible to use Xilinx’s Smart Explorer or Altera’s Design-
Space Explorer in tandem with our frequency-search tools
for verification since they vary the tool settings instead
of frequency constraints. However, our frequency-search
tools are already configured to use the recommended tool
settings to achieve the maximum frequency (as described



14 International Journal of Reconfigurable Computing

(a)

(b)

(c)

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Re
g3
2

Reg32Reg32

Reg32

Reg32

Reg32

Reg32

Reg32

Reg32

Reg32

Reg32

Mult Mult Mult

Mult Mult Mult Mult Mult Mult MultMult

Mult

Add

Add

Add

Add

Add

Add Add

Add

Add

Add

Add

3
2

b

3
2

b

3
2

b
3
2

b
3
2

b

32b

1b

32b

32b
32b3

2
b

3
2

b

32b

3
2

b

32b
32b 56b

1b

1b

56b

56b

56b32b

32b

3
2

b

32b

Accum

Accum

This box represents a core that contains dozens of smaller cores

Input
data

Output data

Long
feedback
data path

Number of replica = 4

Force
calculation

FLT_FIXED

FLT_FIXED

8-tap feed-forward section

FIXED_FLT

FIXED_FLT

Figure 12: Core-level models of case-study applications: (a) 4 × 4matrix multiply, (b) N-body simulation, and (c) 8-tap SPFP IIR filter.

in Section 5.1). Thus, we do not utilize Smart Explorer or
Design-Space Explorer and only use the frequency-search
tools for the verification case studies.

We also compare CMD’s frequency prediction results
with those of other high-level frequency prediction methods.
Those methods, as we referenced in Section 1, are commonly
used by application designers to produce crude estimates of
achievable clock frequencies. The first method we compare
uses the lowest frequency of all the core instances as the
predicted frequency and we call this method lowest core
frequency (LCF). The second method is the adjusted lowest

core frequency (ALCF) that multiplies the LCF prediction by
0.75 and uses the result as the predicted frequency. Although
LCF and ALCF are empirical methods commonly conducted
manually by designers, we implemented them in the CMD
prototype framework for faster access. The third method is
the vendor-tools’ postsynthesis frequency prediction. Note
that postsynthesis prediction is not provided by Altera tools,
so postsynthesis results for only Xilinx FPGAs are shown.

The verification and comparison results of all case-study
applications are summarized in Figure 14. It can be seen from
the results that regardless of the algorithm complexity or the



International Journal of Reconfigurable Computing 15

5 310 317 324 330

Frequency constraint (MHz)

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y 
(M

H
z)

319

Obtained
Constraint

(a)

0

50

100

150

200

250

300

350

400

300 318 324 3305

Frequency constraint (MHz)

Fr
eq

ue
nc

y 
(M

H
z)

328

Obtained
Constraint

(b)

Figure 13: Frequency-constraint search of 8-tap FIR filter for (a) Virtex-4 LX100 and (b) Stratix-II S180, using ISE 12.1 and Quartus II 10.1
(zoomed in range of [300MHz, 330MHz]).

device family CMD provides consistently accurate frequency
predictions compared with other high-level methods. In
Figure 14(a), the worst error rate of CMD prediction is 9.1%
for N-body simulation on Stratix-II S180. In Figure 14(b),
the worst error rate is 20.4% for 96-tap FIR filter on Virtex-
6 LX130. In Figure 14(c), the worst error rate is 7.4% for
DPFP summation and FPFPmatrixmultiplication on Stratix-
V GSD3. Across all case studies, the average prediction error
rate of CMD is 3.6% and themaximumerror rate is 20.4%; the
average error rate of LCF is 15.6% with a maximum of 85.1%;
the average error rate of ALCF is 17.7% with a maximum of
38.8%; the average error rate of postsynthesis is 13.9% with
a maximum of 48.2%. Among all four prediction methods,
CMD has the highest prediction accuracy.

In CMD’s maximum error-rate case (20.4%), verified
frequency is higher than predicted, which indicates that low-
level optimizations are performed by vendor tools that were
not captured by CMD (e.g., retiming). This difference is
an expected limitation of CMD, since such optimizations
are not available at CMD’s abstraction level. However, we
believe the limitation is acceptable since large errors were rare
among all case studies (the second highest error rate is 9.1%).
Plus, when such error occurs, CMD generally underestimates
the maximum frequency, which we believe is still useful.
Moreover, maximum error rate of 20.4% is not significantly
higher than the 13% from [22], which relies on lower-level
information of target device architecture than CMD. CMD
is also significantly better than the 101% error from [23].
Note that CMD’s prediction can also be optimistic because
it is partly based on average routing delay. Finally, for the
SPFP IIR filter case, CMD is able to accurately predict
the maximum clock frequency for all target FPGAs. The
predicted frequency is determined by the feedback data path,
which is the critical path in this application. In general, DSP
applications with feedback cycles are no problem for CMD
because the cores are pipelined and feedback paths can be
handled like any other paths.

Table 3: Resource utilization (area) prediction for N-body simula-
tion.

DSP Verified DSP FFs Verified FFs
Xilinx V4 LX100

N-body 0 0 20325 18966
Altera EP2 S180

N-body 0 0 27121 26209

5.4. Accuracy of Area/Latency Prediction. To concisely show
the accuracy of CMD’s area prediction, we sample the results
of one case study that has the largest prediction error (about
7%)—N-body simulation on a Virtex-4 LX100 FPGA. The
results are shown in Table 3.

For latency prediction, because CMD can calculate the
exact latencies for the case-study applications, the accuracy
was 100%. It is because the applications have regular and static
algorithmic structures (typical of DSP applications).

For both prediction methods, the accuracy is high
because the parameter values of all core instances are accu-
rately derived from datasheets or micro-benchmarking. We
note that the accuracy of the latency/area predictionmethods
may vary for applications from other domains (e.g., control-
intensive applications).

5.5. Core-Level DSE Enabled by Clock-Frequency Prediction.
It is important to evaluate clock-frequency prediction in
scenarios of DSE because prediction accuracy would not
matter if the prediction results cannot help differentiate
various design choices and select the optimal one among
them. We demonstrate in this section that CMD’s clock-
frequency prediction enables more accurate core-level DSE
than the other high-level frequency prediction methods.

To demonstrate core-level DSE, we consider an example
design space for FIR filters: selection from several possible
DSP usage choices for each multiplier and adder. We start



16 International Journal of Reconfigurable Computing

0
100
200
300
400

Xilinx Altera Xilinx Altera Xilinx Altera Xilinx Altera Xilinx Altera Xilinx Altera

Verified
CMD
LCF

ALCF
Postsynthesis

DPFP sum 8-tap FIR Matrix mult 96-tap FIR 8-tap IIR
3.3% 1.3% 0.6% 3.4% 6.9% 1.7% 4.8% 9.1% 0.4% 1.5% 0.0% 0.3%
2.4% 1.3% 18.5% 6.7% 30.8% 17.1% 34.6% 9.1% 24.4% 73.3% 23.1% 4.8%

26.8% 24.0% 11.1% 20.0% 1.9% 12.2% 1.0% 18.2% 6.7% 30.0% 7.7% 21.4%
48.2% N/A 41.0% N/A 11.2% N/A 5.2% N/A 18.3% N/A 38.7% N/A

Prediction 
error rate

CMD
LCF

ALCF
Postsynthesis

Fr
eq

ue
nc

y
(M

H
z)

N-body sim

(a) On Xilinx Virtex-4 LX100, Altera Stratix-II S180 using ISE 14.4, Quartus II 13.0sp1

CMD

0
100
200
300
400
500

Xilinx Altera Xilinx Altera Xilinx Altera Xilinx Altera Xilinx Altera Xilinx Altera
DPFP sum

2.1% 4.1% 1.8% 3.4% 5.5% 3.9% 1.6% 4.4% 20.4% 1.3% 2.8% 0.7%
2.1% 4.1% 10.0% 6.8% 7.5% 5.6% 29.9% 4.4% 1.7% 85.1% 1.2% 0.5%

26.6% 21.9% 17.5% 19.9% 19.4% 20.8% 2.5% 28.3% 26.3% 38.8% 24.1% 25.3%
0.8% N/A 15.8% N/A 13.2% N/A 9.6% N/A 4.7% N/A 6.7% N/A

Prediction 
error rate

LCF
ALCF

Postsynthesis

Fr
eq

ue
nc

y
(M

H
z)

Matrix mult 8-tap FIR 96-tap FIR 8-tap IIR

Verified
CMD
LCF

ALCF
Postsynthesis

N-body sim

(b) On Xilinx Virtex-6 LX130, Altera Stratix-IV S40 using ISE 14.4, Quartus II 13.0sp1

Verified
CMD
LCF

ALCF
Postsynthesis

0
150
300
450
600
750

Xilinx Altera Xilinx Altera Xilinx Altera Xilinx Altera Xilinx Altera Xilinx Altera

CMD
DPFP sum 8-tap FIR

4.1% 7.4% 4.4% 5.1% 5.5% 7.4% 0.5% 3.2% 0.2% 0.1% 1.4% 3.4%
4.1% 7.4% 0.0% 0.1% 2.9% 2.4% 18.0% 5.8% 27.4% 31.9% 29.4% 27.1%

21.9% 19.5% 25.0% 24.9% 22.9% 23.2% 11.5% 20.6% 4.5% 1.1% 3.0% 4.7%
11.5% N/A 0.1% N/A 2.8% N/A 2.0% N/A 16.0% N/A 4.2% N/A

Prediction 
error rate

LCF
ALCF

Postsynthesis

Fr
eq

ue
nc

y
(M

H
z)

96-tap FIR 8-tap IIRMatrix mult N-body sim

(c) On Xilinx Virtex-7 VX330T, Altera Stratix-V GSD3 using ISE 14.4, Quartus II 13.0sp1

Figure 14: Comparison of predicted frequency against verified frequency on various devices (error rates of CMD and compared high-level
methods are summarized in tabular form).

with the 8-tap FIR filter on a Virtex-4 LX100 FPGA and
evaluate eight key design choices as shown in Table 4(a). In
this table, the first column shows DSP usage of all multipliers
and the second column shows DSP usage of all adders, where
max, full, medium, and no are code names in datasheets for

DSP usage per core and actual numbers of used DSPs are
listed after the comma. Each DSP in the table represents
18 × 18 DSP unit on FPGA. Table 4(a) also shows the
predicted (using CMD and other high-level methods) and
verified frequencies for each design choice. The results show



International Journal of Reconfigurable Computing 17

Table 4: Core-level DSE example for SPFP FIR filters (MHz).

(a) 8-tap SPFP FIR filter on Xilinx Virtex-4 LX100

For all mult For all adder Verified Predicted
CMD LCF ALCF Postsynthesis

Full, 4 DSPs No, 0 DSPs 319 317 378 284 188
Max, 5 DSPs No, 0 DSPs 254 257 378 284 188
Max, 5 DSPs Full, 4 DSPs 215 219 390 293 188
No, 0 DSPs Full, 4 DSPs 268 261 280 210 184
Medium, 1 DSP Full, 4 DSPs 280 279 300 225 188
Full, 4 DSPs Full, 4 DSPs 333 326 390 293 188
No, 0 DSPs No, 0 DSPs 271 262 280 210 184
Medium, 1 DSP No, 0 DSPs 278 279 300 225 188

(b) 48-tap SPFP FIR filter on Xilinx Virtex-4 LX100

For all mult For all adder Verified Predicted
CMD LCF ALCF Postsynthesis

Medium, 1 DSP No, 0 DSPs 249 244 300 225 188
No, 0 DSPs No, 0 DSPs 271 262 280 210 188

(c) 96-tap SPFP FIR filter on Altera Stratix-II S180

For all mult For all adder Verified Predicted
CMD LCF ALCF

4 DSPs 0 DSPs 202 205 350 263
0 DSPs 0 DSPs 214 214 251 188

that CMD is able to differentiate all the design choices
and select the one with the fastest clock, 6th design. LCF
and ALCF are unable to differentiate 3rd and 6th designs.
Postsynthesis is the least useful, showing almost identical
predicted frequencies for the design choices.

Similar to the 8-tap FIR example, the example of 48-tap
FIR filter on a Virtex-4 LX100 with two key design choices
is shown in Table 4(b). Finally, the 96-tap FIR example with
two key design choices is shown in Table 4(c), in which
we use Stratix-II S180 instead of Virtex-4 LX100 because
the on-chip DSP resource of Virtex-4 LX100 limits us to
only one key design choice (no DSP for multiplier and
adder). The results in Tables 4(b) and 4(c) demonstrate the
advantage of CMD more clearly. For larger designs like 48-
tap and 96-tap FIR, predictions of LCF and ALCF suggest
the slower design; postsynthesis is indecisive. In contrast,
CMD’s accurate prediction is able to differentiate and select
the fastest design in all cases.

Note that the example design space is much larger than
the design choices that we evaluated. For example, the 8-
tap FIR’s example design space has 1320 different design
choices because each multiplier or adder has several dis-
tinct DSP configurations and the number of configuration
combinations quickly grows with 8 multipliers and 7 adders
in the application. In this paper, we select eight typical
design choices (varyingDSP configurations for all multipliers
or all adders) from the 1320 choices for the purpose of
demonstration. Also note that the example design space
is only a small corner of the entire design space for the
simple 8-tap FIR, because of the combination explosion from

design choices like latency, alternative IPs, and more (like
the ones mentioned in Section 3.1). CMD can be applied if
those design choices incur changes to the core-level model
of the application (e.g., affecting key parameters of the
core instances). However, rigorous DSE studies should be
conducted on a case-by-case basis for specific applications.
Also, automated placement estimation and clock-frequency
prediction are needed for CMD to efficiently handle big
design spaces of FPGA applications.

Core-level DSE enabled by CMD’s accurate clock-
frequency prediction contributes greatly to productivity
improvement of FPGA application development. An anecdo-
tal example of productivity gain fromusingCMD is discussed
in the next section.

5.6. Productivity Improvements from CMD. The productivity
improvements of using CMDare from three sources: (1) core-
level DSE selects optimal design in the formulation stage;
(2) code-template generation saves coding time in the design
stage; and (3) the frequency constraint generation reduces the
number of frequency constraints to search for the maximum
frequency in the translation stage.The automated frequency-
search tools in the prototype framework can work with
generated frequency constraints to further reduce the time
required to achieve the maximum frequency. For example,
running a parallel exhaustive search on thirty servers over
a range of constraints (e.g., ±15MHz of the CMD-generated
constraint) can achieve the maximum frequency, in compa-
rable amount of time to a single run of vendor tools.



18 International Journal of Reconfigurable Computing

Table 5: Example of productivity gains from using CMD for 8-tap
FIR filter.

(a) 30-node cluster (b) Single node
Breakdown of dev. time 1 2 1 2
Formulation w/ CMD N/A 1 hr N/A 1 hr
Write impl. HDL code 8 hrs 6 hrs 8 hrs 6 hrs
Binary freq. search 40 hrs N/A 40 hrs 3 hrs
Exhaustive freq. search 8 hrs 1 hr N/A N/A
Total design time 56 hrs 8 hrs 48 hrs 10 hrs
Result frequency 333MHz 333MHz 310MHz 310MHz
Column 1: traditional design method (no CMD or binary/exhaustive fre-
quency-search methods).
Column 2: core-level DSE, code-template/constraints generation, and fre-
quency-search tools.

To demonstrate the productivity improvements from
using CMD’s core-level DSE, code-template generation, con-
straint generation, and the frequency-search tools, we use the
8-tap SPFP FIR filter application as an example to compare
design time of the CMD methodology against a traditional
timing-closure design method, with maximum frequency as
the design goal. The design time measures the period from
formulation to obtaining the 8-tap SPFP FIR filter imple-
mentation with the highest achievable frequency. Coding
time is estimated by the designer and frequency-search time
is measured as runtime of our automated frequency-search
tools. The design space is limited to the example design
choices shown in Table 4(a).

The results are summarized in Table 5. Table 5(a) shows
results of using 30-node cluster for the frequency-search
tools. Table 5(b) shows the single-server results for compar-
ison (hence no exhaustive search). Column 1 features our
traditional design method; not using CMD for formulation,
the designer wrote and debugged the VHDL code of the
example application from scratch. After that, for each of the
design choices, the designer modified the code and used
binary search to obtain a resulting clock frequency. If a
30-node cluster is available, the exhaustive method is used
to search 30 higher frequency constraints than the result
frequency of binary search. Column 2 features a design
method that uses CMD, including core-level DSE, code-
template generation, and constraint generation.

Comparing the results between columns 1 and 2 in both
Tables 5(a) and 5(b), we can see that the CMD methods
achieve the same design as the traditional method in much
shorter time. In particular, we observed over 7x (or 85%)
design time reduction from using CMD with a 30-node
cluster and 4x (or 75%) design time reduction with a single
server. This improvement is comparable to HLS studies such
as [54], which shows 5x (or 80%) reduction in design time for
a stereo-matching application, but at the cost of slower clock
frequency than the RTL design.

From the design time breakdown, we can see how much
time each CMD method saved. Core-level DSE selected the
optimal design during formulation in one hour and saved the
time for design/translation of the other seven designs.That is
why the exhaustive search time of CMD is 1/8th of that for the

traditional method in Table 5(a) and themain reason why the
binary search time is drastically reduced in Table 5(b). Code-
template generation saved us two hours of coding time as
shown inTables 5(a) and 5(b). Constraint generation provides
a good starting constraint for the frequency-search tools and
thus as shown in Table 5(a) the binary search can be skipped
and the same frequency as the traditional method is still
achieved. As shown in the time breakdown, the most time
saving comes from core-level DSE.

Note that the result frequency of 333MHz is not achieved
in Table 5(b). That is because the exhaustive search is not
available and the binary search method is sensitive to the
noise phenomenon of place-and-route process as discussed
in Section 3.3. However, the design time reduction is still
significant when compared to the traditional method on a
single server. Also note that our example application is small
and a single run of its placement-and-routing takes less than
1 hour. Thus, for large applications with lengthier placement-
and-routing process, more time is likely to be saved by using
CMD.

6. Conclusions and Future Work

FPGA usage has been limited largely due to the relatively
immature nature of design tools. Previous studies have inves-
tigated formulation as a step before application development
to overcome this limitation. Following this approach, several
system-level formulation tools are available to help designers
to conduct early DSE for FPGA applications. However, these
tools assume that key parameters (e.g., clock frequency)
of algorithmic components and architectural devices in the
system-level models are provided by designers, which greatly
limits wider use of these formulation tools.

To address this problem, we introduced a core-level
modeling and design (CMD) methodology that enables the
modeling of an FPGA application at an abstract level and
features prediction methods that produce accurate estimates
of key design parameters such as clock frequency. Through
extensive case studies in the DSP application domain, it
was shown that regardless of algorithm complexity or tar-
get device family CMD has the highest frequency predic-
tion accuracy as compared to other high-level prediction
methods—3.6% average prediction error versus 13.9% aver-
age error. More importantly, the case studies demonstrated
that the higher accuracy allows CMD to better differentiate
candidate designs and select the best one during core-level
DSE. Finally, we demonstrated that core-level DSE and code-
template/constraint generation can significantly reduce the
total design time for an example application.

For future work, we identify several directions to
expand the CMD methodology and the prototype frame-
work. Firstly, importing architecture models of FPGAs (e.g.,
[51]) into CMD can help application designers to choose
amenable devices. Secondly, leveraging existing RTL predic-
tion research could reduce the need for micro-benchmarking
cores. Thirdly, automated retiming within core-level model
could be added to improve frequency prediction accuracy.
Moreover, exploration and evaluation of larger FPGA circuits
(e.g., from the VTR benchmark suite [55]) and additional



International Journal of Reconfigurable Computing 19

application domains (e.g., control-intensive applications)
could help further validate CMD and identify additional
usage of CMD. Finally, design goals other thanmaximum fre-
quency could be explored and evaluated, such as maximum
performance with an area constraint.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant nos. EEC-
0642422 and IIP-1161022.The authors gratefully acknowledge
tools and equipment provided by Xilinx and Altera that
helped to make this work possible.

References

[1] K. Compton and S. Hauck, “Reconfigurable computing: a sur-
vey of systems and software,” ACM Computing Surveys, vol. 34,
no. 2, pp. 171–210, 2002.

[2] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko,
andD. Buell, “The promise of high-performance reconfigurable
computing,” Computer, vol. 41, no. 2, pp. 69–76, 2008.

[3] A. George, H. Lam, and G. Stitt, “Novo-G: at the forefront of
scalable reconfigurable supercomputing,” Computing in Science
and Engineering, vol. 13, no. 1, Article ID 5678570, pp. 82–86,
2011.

[4] S. Choi, R. Scrofano, V. K. Prasanna, and J.-W. Jang, “Energy-
efficient signal processing using FPGAs,” in Proceedings of
the ACM/SIGDA 11th ACM International Symposium on Field
Programmable Gate Arrays (FPGA ’03), pp. 225–234, ACM,
February 2003.

[5] J. Noguera and R. M. Badia, “Power-performance trade-offs
for reconfigurable computing,” in Proceedings of the 2nd IEEE/
ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS ’04), pp. 116–121,
ACM, Stockholm, Sweden, September 2004.

[6] J. M. Rabaey, “Reconfigurable processing: the solution to low-
power programmable DSP,” in Proceedings of the IEEE Interna-
tional Conference onAcoustics, Speech, and Signal Processing, pp.
275–278, Munich, Germany, April 1997.

[7] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee, “Parallel
algorithms for FPGA placement,” in Proceedings of the 10th
Great Lakes Symposium on VLSI (GLSVLSI ’00), pp. 86–94,
Chicago, Ill, USA, March 2000.

[8] J. Rose and D. Hill, “Architectural and physical design chal-
lenges for one-million gate FPGAs and beyond,” in Pro-
ceedings of the ACM 5th International Symposium on Field-
Programmable Gate Arrays, pp. 129–132, Monterey, Calif, USA,
February 1997.

[9] H. Blume, H. Hubert, H. T. Feldkamper, and T. G. Noll, “Model-
based exploration of the design space for heterogeneous systems
on chip,” in Proceedings of the IEEE International Conference on
Application- Specific Systems, Architectures, and Processors, pp.
29–40, San Jose, Calif, USA, 2002.

[10] M. F. D. S. Oliveira, L. B. de Brisolara, L. Carro, and F. R.
Wagner, “Early embedded software design space exploration

using UML-based estimation,” in Proceedings of the 17th IEEE
International Workshop on Rapid System Prototyping (RSP ’06),
pp. 24–32, IEEE, Chania, Greece, June 2006.

[11] C. Reardon, B. Holland, A. George, G. Stitt, and H. Lam,
“RCML: an environment for estimation modeling of reconfig-
urable computing systems,” ACM Transactions on Embedded
Computing Systems, vol. 11, supplement 2, pp. 43:1–43:22, 2012.

[12] C. Reardon, E. Grobelny, A. D. George, andG.Wang, “A simula-
tion framework for rapid analysis of reconfigurable computing
systems,” ACM Transactions on Reconfigurable Technology and
Systems, vol. 3, no. 4, article 25, 2010.

[13] K. Sigdel, M. Thompson, A. D. Pimentel, C. Galuzzi, and K.
Bertelsy, “System-level runtime mapping exploration of recon-
figurable architectures,” in Proceedings of the IEEE International
Symposium on Parallel & Distributed Processing, Rome, Italy,
May 2009.

[14] B. N. Uchevler, K. Svarstad, J. Kuper, and C. Baaij, “System-level
modelling of dynamic reconfigurable designs using functional
programming abstractions,” in Proceedings of the 14th Interna-
tional Symposium on Quality Electronic Design (ISQED ’13), pp.
379–385, Santa Clara, Calif, USA, March 2013.

[15] B. Holland, K. Nagarajan, C. Conger, A. Jacobs, and A. D.
George, “RAT: a methodology for predicting performance in
application design migration to FPGAs,” in Proceedings of the
1st International Workshop on High-Performance Reconfigurable
Computing Technology & Applications (HPRCTA ’07), pp. 1–10,
ACM, Reno, Nev, USA, November 2007.

[16] S. Merchant, B. Holland, C. Reardon et al., “Strategic challenges
for application development productivity in reconfigurable
computing,” in Proceedings of the IEEE National Aerospace
and Electronics Conference (NAECON ’08), pp. 209–218, IEEE,
Dayton, Ohio, USA, July 2008.

[17] G. Wang, G. Stitt, H. Lam, and A. D. George, “A framework
for core-levelmodeling and design of reconfigurable computing
algorithms,” in Proceedings of the 3rd International Workshop
onHigh-Performance Reconfigurable Computing Technology and
Applications (HPRCTA ’09), pp. 29–38, ACM, Portland, Ore,
USA, November 2009.

[18] S. Mohanty and V. K. Prasanna, “A model-based extensible
framework for efficient application design using FPGA,” ACM
Transactions onDesign Automation of Electronic Systems, vol. 12,
no. 2, Article ID 1230805, 2007.

[19] Xilinx System Generator for DSP User Guides, Release 10.1.1,
2008.

[20] J. Eker, J. W. Janneck, E. A. Lee et al., “Taming heterogeneity—
the ptolemy approach,” Proceedings of the IEEE, vol. 91, no. 1, pp.
127–143, 2003.

[21] D. Strenski, “FPGA Floating Point Performance,” 2007, http://
www.hpcwire.com/2007/01/12/fpga floating point performance/.

[22] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, “Accurate
area and delay estimators for FPGAs,” in Proceedings of the
Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE ’02), pp. 862–869, IEEE, Paris, France, March 2002.

[23] R. Enzler, T. Jeger, D. Cottet, and G. Troster, “High-level area
and performance estimation of hardware building blocks on
FPGAs,” in Proceedings of the 10th International Conference on
Field Programmable Logic and Its Applications (FPL ’00), Villach,
Austria, August 2000, R. W. Hartenstein and H. Grünbacher,
Eds., vol. 1896, pp. 525–534, Springer, 2000.

[24] M. B. Abdelhalim and S. E.-D. Habib, “Fast FPGA-based delay
estimation for a novel hardware/software partitioning scheme,”



20 International Journal of Reconfigurable Computing

inProceedings of the 2nd international Design andTestWorkshop
(IDT ’07), pp. 175–181, Cairo, Egypt, December 2007.

[25] R. J. Francis, J. Rose, and K. Chung, “Chortle: a technology
mapping program for lookup table-based field programmable
gate arrays,” in Proceedings of the 27th ACM/IEEE Design
Automation Conference (DAC ’90), pp. 613–619, Orlando, Fla,
USA, June 1990.

[26] M. D. F. Schlag, P. K. Chan, and J. Kong, “Empirical evaluation
of multilevel logic minimization tools for a field-programmable
gate array technology,” Tech. Rep., University of California,
Santa Cruz, Santa Cruz, Calif, USA, 1991.

[27] XACT Development System, Libraries Guide, Xilinx, San Jose,
Calif, USA, 1994.

[28] XACT Xilinx Synopsys Interface FPGA User Guide, Xilinx, San
Jose, Calif, USA, 1995.

[29] L. Yan, T. Srikanthan, and N. Gang, “Area and delay estimation
for FPGA implementation of coarse-grained reconfigurable
architectures,” in Proceedings of the ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES ’06), pp. 182–188, Ottawa, Canada, June 2006.

[30] P. Bjureus, M. Millberg, and A. Jantsch, “FPGA resource and
timing estimation fromMatlab execution traces,” in Proceedings
of the 10th International Symposium on Hardware/Software
Codesign (CODES ’02), pp. 31–36, Estes Park, Colo, USA, May
2002.

[31] C. Brandolese, W. Fornaciari, and F. Salice, “An area estimation
methodology for FPGA based designs at systemc-level,” in
Proceedings of the 41st DesignAutomationConference (DAC ’04),
pp. 129–132, San Diego, Calif, USA, June 2004.

[32] T. Jiang, X. Tang, and P. Banerjee, “Macro-models for high level
area and power estimation on FPGAs,” in Proceedings of the 14th
ACM Great Lakes symposium on VLSI (GLSVLSI ’04), pp. 162–
165, ACM, Boston, Mass, USA, April 2004.

[33] D. Kulkarni, W. A. Najjar, R. Rinker, and F. J. Kurdahi,
“Compile-time area estimation for LUT-based FPGAs,” ACM
Transactions on Design Automation of Electronic Systems, vol.
11, no. 1, pp. 104–122, 2006.

[34] M. C. Lieu, S. K. Lam, and T. Srikanthan, “Rapid area-time
estimation technique for porting C-based applications onto
FPGA platforms,” Scalable Computing: Practice and Experience,
vol. 8, no. 4, pp. 359–371, 2007.

[35] J. Das, A. Lam, S. J. E. Wilton, P. H. W. Leong, and W. Luk, “An
analyticalmodel relating FPGAarchitecture to logic density and
depth,” IEEETransactions onVery Large Scale Integration (VLSI)
Systems, vol. 19, no. 12, pp. 2229–2242, 2011.

[36] J. Pistorius and M. Hutton, “Placement rent exponent calcu-
lation methods, temporal behaviour and FPGA architecture
evaluation,” in Proceedings of the International Workshop on
System Level Interconnect Prediction, pp. 31–38, April 2003.

[37] B. S. Landman and R. L. Russo, “On a pin versus block
relationship for partitions of logic graphs,” IEEE Transactions
on Computers C, vol. 20, no. 12, pp. 1469–1479, 1971.

[38] M. Feuer, “Connectivity of random logic,” IEEE Transactions on
Computers, vol. 31, no. 1, pp. 29–33, 1982.

[39] X. Yang, E. Bozorgzadeh, and M. Sarrafzadeh, “Wirelength
estimation based on Rent exponents of partitioning and place-
ment,” in Proceedings of the International Workshop on System-
Level Interconnect Prediction (SLIP ’01), pp. 25–31, April 2001.

[40] P. Coussy, C. Chavet, P. Bomel et al., “GAUT: a high-level
synthesis tool for DSP applications,” in High-Level Synthesis:
From Algorithm to Digital Circuit, pp. 147–169, Springer, New
York, NY, USA, 2008.

[41] LabVIEW FPGA Module, National Instrument, http://www.ni
.com/fpga/.

[42] B. So, M. W. Hall, and P. C. Diniz, “A compiler approach to fast
hardware design-space exploration in FPGA-based systems,” in
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 165–176, Berlin,
Germany, June 2002.

[43] K. B. Chehida andM. Auguin, “HW/SW partitioning approach
for reconfigurable system design,” in Proceedings of the Interna-
tional Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES ’02), pp. 247–251, ACM, Grenoble,
France, October 2002.

[44] Floating-Point Operator v4.0 Data Sheet, http://www.xilinx
.com/.

[45] Floating-Point Megafunctions User Guide, http://www.altera
.com/.

[46] SimulinkUser’sGuide, http://www.mathworks.com/help/simu-
link/index.html.

[47] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu,
“Automatic code generation from design patterns,” IBM Systems
Journal, vol. 35, no. 2, pp. 151–171, 1996.

[48] J. Herrington, Code Generation in Action, Manning Publica-
tions, Greenwich, Conn, USA, 2003.

[49] P. Lee and M. Leone, “Optimizing ML with run-time code
generation,” ACM SIGPLAN Notices, vol. 31, no. 5, pp. 137–148,
1996.

[50] R. Y. Rubin and A. M. DeHon, “Timing-driven pathfinder
pathology and remediation: quantifying and reducing delay
noise in VPR-pathfinder,” in Proceedings of the 19th ACM/
SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA ’11), pp. 173–176, ACM, Monterey, Calif, USA,
March 2011.

[51] V. Betz and J. Rose, “VPR: a newpacking, placement and routing
tool for FPGA research,” in Proceedings of the 7th International
Workshop on Field-Programmable Logic and Applications, Lon-
don, UK, September 1997.

[52] P. Christie and D. Stroobandt, “The interpretation and appli-
cation of rent’s rule,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 8, no. 6, pp. 639–648, 2000.

[53] J. Hartigan and M. Wong, “A k-means clustering algorithm,”
Applied Statistics, vol. 28, pp. 100–108, 1979.

[54] Y. Liang, K. Rupnow, Y. Li, D. Min, M. N. Do, and D. Chen,
“High-level synthesis: productivity, performance, and software
constraints,” Journal of Electrical andComputer Engineering, vol.
2012, Article ID 649057, 14 pages, 2012.

[55] J. Rose, J. Luu,C.W.Yu et al., “TheVTRproject: architecture and
CAD for FPGAs from verilog to routing,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’12), pp. 77–86, ACM, New York, NY, USA,
February 2012.


