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V1
Goal
§ Enable high-productivity computing in heterogeneous computing systems: 

CPU + {CPU, GPU, FPGA, TPU, …}
§ Similar to DARPA High-Productivity Computing Systems program for homogeneous systems (e.g., 

Chapel, Fortress, X10) but for heterogeneous systems (e.g., Chapel, OpenCL, SYCL, oneAPI, VITIS)
§ Preferred Vehicle: Modern, Open Standard Languages & Runtimes
§ Case Studies:  Applications and Benchmarks, e.g., Berkeley Dwarfs à OpenDwarfs (@ VT)
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Programming Ecosystems

Write ONCE, run ANYWHERE!



V1
Background & Motivation
§ Extend our R&D to create and analyze an ecosystem of high-productivity tools, 

environments, and benchmarks for heterogeneous computing

§ Challenges: How to productively …
§ Program an application so it runs on many platforms?
§ Evaluate a processor architecture & compare it to others?
§ Develop back-end optimizations & know that they will work well?
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Tools & Environments Benchmarks

Devices Programming Ecosystems

Application-dependent



V1
Recent Work:  Performance & Productivity
§ Sobel Filter on Intel Arria 10, AMD Alveo U250, and NVIDIA RTX 3090

§ Rigorous Performance & Productivity Evaluation of Representative Apps 
(FFT, Jaccard similarity, biconjugate gradient stabilized method – BiCGSTAB, and graph algorithms)     
in Different Languages on Different Devices (CPUs, GPUs, and FPGAs)
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Sobel Filter on 
3840 × 2160 

Image

Language

Verilog

OpenCL

oneAPI à SYCL

AMD Alveo U250 (FPGA)

fps SLOC Dev Time 
(hrs)

Not implemented in Verilog 

6.6* 275 –

No support for oneAPI

Intel Arria 10 (FPGA)

fps SLOC Dev Time 
(hrs)

132.6 429 305

85.6 270 50

21.4 139 20
* Evaluated the same OpenCL kernel written for Arria 10 on U250 without any vendor-specific optimizations

NVIDIA RTX 3090 (GPU)

fps SLOC Dev Time 
(hrs)

Not functional on GPU 

141.4 254 –

133.1 135 –

Device

OpenCL & SYCL: 
Write once,

run anywhere

fps: 
frames
per
second



V1
Approach
• Implement a diverse set of application benchmarks
§ Regular vs irregular. Floating point vs integer. CPU- vs memory-intensive

• Characterize the productivity of a heterogeneous system
§ Kernel Development Time (KDT) à Wall Clock Time
§ Source Lines Of Code (SLOC) and Code Convergence (CC)

• Characterize the performance-vs-productivity tradeoff
§ Performance Portability (      )
§ Performance-Productivity Product ( P )

• Identify the best platform and associated ecosystem 
for productivity, performance, or both (across many apps)
• Enable further high-productivity research:  automated co-scheduling at runtime and 

auto-generation of translators Open Source Closed Source



V1
Proposed Tasks for V1-24
(Memberships:  Mandatory + Optional, e.g., 2+1)

• Task 1: FPGA Productivity and Performance (Speed/Space/Power) (2+1)

• Task 2: GPU Productivity and Performance (Speed/Power) (2+1)

• Task 3: Chapel GPU Parallel & Distributed Programming: Study, Analysis, Outreach 
(2+1)

• Task 4: Simultaneous Co-scheduling of Heterogeneous Devices:  CPU+GPU+FPGA
(0+2)

• Task 5: Auto-Generation of Source-to-Source Translators (0+2)
§ One of {CUDA-to-OpenCL, CUDA-to-OpenMP, CUDA-to-Chapel, CUDA-to-SYCL, …}
§ Baseline:  Update of CU2CL: CUDA-to-OpenCL Source-to-Source Translation
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V1
Task 1: FPGA Productivity and Performance (Speed/Space/Power)

OpenCL dev à less manual 
intervention needed compared 
to VITIS HLS and VITIS AI
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Design Model in TF/Torch

Train+Test Model on xPU

Export Model

Optimize Model

Quantize Model

Compile Model

Package Model

Import PYNQ DPU Overlay

Import Model for Inference

Deep Learning 
Model

Model Preparation

DPU Wrapper

OpenCL Development Flow

Host (CPU) code 
development

Kernel (FPGA code) 
development

Debugging and 
simulation

Compile for FPGA 
hardware and run

VITIS HLS Development Flow VITIS AI Development Flow

Testbench development

Top-level function 
development in C

Simulation

C + RTL co-simulation

Synthesis

IP generation

Configure host ecosystem 
with IP in VIVADO

Invoke the IP in PYNQ

Write Once, Run Anywhere?  OpenCL and PYNQ



V1
Task 1: FPGA Productivity and Performance (Speed/Space/Power)
• Motivation
§ Multiple design-entry options (e.g., OpenCL, VITIS HLS, VITIS AI)

§ Performance & productivity tradeoffs of FPGA languages and 
tools relatively unknown

• Approach
§ Develop target apps via open-source & vendor toolchains
§ Evaluate performance & productivity of FPGA design options

• Tasks 1a, 1b, 1c:  Productivity & performance of …
a) Fast Fourier transform (FFT) with custom-length input via VITIS HLS

• Target:  Snickerdoodle board (ARM Cortex-A9 CPU + AMD Artix-7 FPGA)

b) Existing reinforcement learning (RL) model via VITIS AI toolchain
• Target:  Alpha Data PA100 (2x ARM Cortex-A72, 2x ARM Cortex-R5, 400x AI Engines)

c) FFT & RL via open-source toolchains, e.g., SYCL (currently unsupported)

d) “To-be-provided” RL model for inference
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FFT: Power of 2 vs 
Non-power of 2      

Reinforcement 
Learning –

LunarLander

FPGA Vendor 
and Type

Language & Tools

OpenCL VITIS 
HLS

VITIS
AI

AMD server-grade

AMD embedded

AMD with deep-learning 
processor units (DPUs)

Intel server-grade

Supported Unsupported

Tasks: Baseline & Optional
( 2 + 1 )

Write once, run anywhere

Write Once, Run Anywhere?  OpenCL and SYCL
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Task 2: GPU Productivity and Performance (Speed/Power)
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• Motivation
§ High Performance but Low Productivity:  Low-level C/C++-based languages à CUDA, OpenCL, SYCL
§ High Productivity but Less Performant:  (1) Vendor libraries & tools. (2) High-Productivity Lang.
• Issues: (1) Non-portable libraries, e.g., CUDA libraries not portable to AMD hardware. (2) Lack of hardware-

software interface control to achieve high performance. (3) Rigidity of pipelines and data abstractions

• Approach
§ Evaluate 1st & 3rd-party solutions to reach more devices with less code (without sacrificing performance)
§ First-party solutions?  Translators, e.g., Intel’s dpct (CUDAàoneAPI/SYCL) or AMD’s hipify (CUDAàHIP)
§ Third-party?  Languages, e.g., Chapel, OpenCL, SYCL.  Libraries, e.g., PyTorch, Apache Arrow, C++ std::par

• Tasks 2a, 2b, 2c:  Productivity & performance of
a) Jaccard similarity & other graph apps (e.g., Gunrock) à parallel & distributed
b) Biconjugate gradient stabilized method (BiCGSTAB)
c) Community detection à graph clustering (see V3-24)
d) FFT with custom-length (non-power-of-two) input

Write Once, Run Anywhere?  
OpenCL, SYCL, Chapel, oneAPI

Think AMD MI300 CPU+GPU and NVIDIA GH200 CPU+GPU

Tasks: Baseline & Optional
( 2 + 1 )



V1
Task 3: Study, Analysis, and Outreach for Chapel GPU
• Motivation
§ Chapel 1.0 (2009) to Chapel 1.26 (2022)
• High-Productivity Computing for Parallel & Distributed CPU Computing à Alternative to MPI or MPI+OpenMP

§ Rise of GPU Computing (since 2007)
• Low-Level Languages (CUDA, OpenCL, …) + High-Level but Rigid/Non-Portable (PyTorch, cuBLAS, …) Libraries

• Approach
§ Study, analyze, & educate community on Chapel GPU for parallel & distributed CPU+GPU computing

• Tasks 3a, 3b, and 3c
a) Stress-test and evaluate updated and new features of the Chapel 1.33+ releases
b) Profile & analyze performance of Chapel 1.33+ on NVIDIA GPU with Jaccard similarity & OpenDwarfs
• Chapel runtime overheads, Intra-node parallelism and inter-node parallelism (a la OpenMP/OpenACC/CUDA 

and MPI, respectively)
• Conduct on AMD/Intel CPU and AMD/Intel GPU, as time & access permits

c) Testing, deployment, and education with Chapel 1.33+
… for parallel computation class(es) at VT
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Write Once, Run Anywhere?  ChapelTasks: Baseline & Optional

( 2 + 1 )



V1
Task 4: Simultaneous Co-scheduling of Heterogeneity
(CPU+GPU+FPGA) – Details in Appendix

• Motivation:  Why Traditional Processor Scheduling?
§ Physiologically, left & right brain used simultaneously
§ Silicon-wise, use CPU & GPU brain simultaneously

… and even FPGA.  (CPU+GPU integration, too!)
§ CoreTSAR:  Past R&D on CPU+GPU co-scheduling of regular apps via OpenMP

§ Approach
§ CoreTSAR++:  Generalize co-scheduling for multi-heterogeneity 

(CPU+GPU+FPGA) and to support regular & irregular workloads 
with data-dependent memory access patterns

§ Task 5a, 5b, 5c:  CoreTSAR++ Exploration
a) Identify & implement appropriate irregular apps to co-schedule
b) Manually implement & evaluate co-scheduled irregular apps
c) Automate co-scheduling on heterogeneous system (CPU+GPU+ …)
d) Investigate simultaneous co-scheduling using Chapel
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time

Traditional
Scheduling:
CPU kernel, 

then GPU 
kernel

Co-Scheduling:
CPU & GPU 

kernels 
simultaneously

time

Triangle counting Jaccard similarity

Sparse linear solver à Biconjugate gradient stabilized

Write Once, Run Anywhere? SYCL and Chapel

Think AMD MI300 and NVIDIA GH200 CPU+GPU

Tasks: Baseline & Optional
( 0 + 2 )
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Task 5: Auto-Generation of Source-to-Source Translators
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Instead of manually creating CU2CL (from V1-12) and 
manually updating it when the clang ecosystem changes, 
auto-generate the CU2CL source-to-source translator.

§ Task 5a, 5b, 5c
a) Update CU2CL source-to-source translator from V1-12
b) Train NLP to auto-generate CUDA-to-OpenCL translator
c) Evaluate accuracy of original CU2CL to auto-generated 

CU2CL on pre-existing suite of application codes
d) Assess efficacy of auto-generator for other languages

§ Motivation
§ Too many heterogeneous programming languages 

& devices in legacy scientific code. Non-portable.
§ Alternative to “write once, run anywhere” 

languages? Source-to-source translation
• Examples:  CUDA to OpenCL; OpenMP to CUDA; etc., 

but such translators are MANUALLY coded.

§ Goal: Automatically generate such automated 
source-to-source translators

§ Approach
• Leverage abstract syntax trees (ASTs) to “structure” 

CUDA code, ensuring that translations respect domain 
knowledge and best practices.

• Combine neural machine translation (NMT) with neuro-
symbolic AI to decipher underlying logic of domain-
specific CUDA code, enabling more accurate translation.

Enable software migration & massive 
code reuse across supercomputers

Write Once, Run Anywhere 
via Source-to-Source Xlation

Tasks: Baseline & Optional
( 0 + 2 )



V1
Milestones, Deliverables, and Budget 
§ Major Milestones (Tasks: T1-T6)
§ T1: FPGA Productivity: FFT via VITIS HLS+PYNQ and RL via VITIS AI
§ T2: GPU Productivity: Jaccard Similarity & Other Graphs via OpenCL/SYCL
§ T3: Chapel 1.32: Synthesis and analysis of Jaccard similarity – parallel and distributed
§ T4:  Simultaneous Co-scheduling of Heterogeneity: CPU+GPU co-scheduling of irregular app
§ T5: Auto-Generation of Source-to-Source Translation: AI-generated CUDA-to-OpenCL translator

§ Deliverables
§ Monthly progress reports, along with mid-year and end-of-year full reports
§ 2-3 publications at top-tier conference venues or journals

§ Recommended Budget
§ Minimum: 6 memberships (300 votes)
§ Maximum: 13 memberships (650 votes)
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V1

§ Enable high-productivity computing in heterogeneous computing systems: 
CPU + {CPU, GPU, FPGA, TPU, …} via open standards: OpenCL, SYCL, Chapel, 
and to a lesser degree, oneAPI

§ Evaluate performance & productivity of representative apps (OpenDwarfs, FFT, 
Jaccard similarity, biconjugate gradient stabilized method – BiCGSTAB, and graph 
algorithms) on different devices (CPUs, GPUs, and FPGAs)

§ Direct influence over processors & frameworks studied and apps & datasets used
§ Direct benefit from new methods, tools, datasets, codes, models, and insights 

created as well as new metrics of evaluation
§ Direct insights from R&D and analysis

Member Benefits

Conclusion

14
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APPENDIX
1. FPGA: Proprietary (RTL & HLS) vs. C/C++ (OpenCL/SYCL/oneAPI)
2. GPU: Low-Level SIMD (CUDA/OpenCL/SYCL) vs. High-Level SIMD (Chapel)
3. Open-Source Approach Leveraging Open Source:  Evaluation Metrics
4. Open-Source Approach Leveraging Open Source

§ Enabling Further High-Productivity Research
5. Details for Task 2c: Graph Clustering via oneAPI/SYCL (Related to V2-24)
6. Details for Task 3: Study, Analysis, and Outreach for Chapel GPU
7. Details for Task 4: Simultaneous Co-scheduling of Heterogeneity (CPU+GPU+FPGA)

8. Details for Task 4: Simultaneous Co-scheduling of Heterogeneity (CPU+GPU+FPGA):

Irregular Apps
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FPGA:  Proprietary (RTL & HLS) vs. C/C++ (OpenCL …)
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Low-Level RTL (Verilog/VHDL)

Pros
§ Faster development time
§ Easier to read and understand
§ Less error-prone
§ Portable 

(CPU, GPU, FPGA)

Cons
§ Limited control over timing 

requirements
§ Performance loss due to 

overhead of high-level abstractions
§ Mixed vendor support for open 

standards

High-Level C/C++ (OpenCL/SYCL)

Verilog

CPU
GPU

FPGA

OpenCL

Pros
§ Direct control over timing 

requirements and design 
§ Maximum performance via 

via HW-specific optimization

Cons
§ SLOW development time
§ Tedious to read & understand
§ More error-prone
§ NOT portable

Mid-Level HLS (VITIS HLS & AI)

Pros and Cons
§ Fairly slow development time
§ Less tedious to read  

& understand
§ Fairly error-

prone
§ NOT portable
§ Still requires

low-level knowledge to prepare 
and invoke the kernel

VITIS AI

CPU
GPU

FPGA

“machine language” “assembly language” “high-level language”
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GPU: CUDA/OpenCL/SYCL vs. Chapel

(Parallel) (Parallel+Distributed) 
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Low-Level SIMD (CUDA/OpenCL/SYCL) High-Level SIMD+MIMD (Chapel)

Pros
§ Faster development time
§ Easier to read and understand
§ Automatic array/domain decomposition
§ Natively extensible from CPU-parallel to 

heterogeneous-parallel and distributed

Cons
§ Limited control over mapping, registers, 

and memory
§ Performance loss due to 

overhead of high-level abstractions
§ Limited developer resources and 

community

Pros
§ Direct control over mapping. 

registers, and memory
§ Maximum performance via

hardware-specific optimization

Cons
§ Slower development time
§ Tedious to read & understand
§ Manual device/thread decomposition
§ Manual distribution via MPI

OpenCL/
SYCL

CUDA NVIDIA 
GPU

AMD
GPU

FPGA
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Open-Source Approach
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Possible for hybrid 
OpenCL/SYCL+RTL

RTL

Evaluation Metrics
• Kernel Development Time
• Source Lines of Code (SLOC)
• Code Convergence (CC)
• Performance-Productivity Product (PPP)
• Performance Portability ( )



V1
Open-Source Approach
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Enabling more high-productivity research
• Automated co-scheduling of heterogeneous 

devices (i.e., CPU, GPU, FPGA, etc.)
• Auto-generation of automated translators



V1Task 2c: Graph Clustering via oneAPI/SYCL

• Approach
§ Translate C++ graph clustering code (V2-24) to oneAPI/SYCL to run heterogeneously on CPU+GPU
§ Evaluate and compare runtime performance of C++ optimized CPU code to oneAPI/SYCL translation on 

different architectures:  CPU-only, GPU-only, CPU+GPU, CPU+GPU with co-scheduling)
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Graph clustering à use cases across many domains ü

Networking/Finance     Bioinformatics Social media

Intrusion/Fraud        Epidemiology &    Recommender
Detection              Drug Discovery          Systems

• Motivation
§ Accurate graph clustering à

computationally expensive û
§ Available implementations of statistically robust graph 

clustering algorithms?  CPU-oriented û
• Frontier supercomputer:  99% of FLOPS from GPUs

• Observation
§ CPU-only implementations sacrifice runtime gains of 

massively parallel GPUs (and low-power gains of FPGAs)



V1Task 3: Study, Analysis, and Outreach for Chapel GPU
• Motivation
§ Chapel 1.30 (2023):  Intro of GPU Support
§ Need for a portable high-level approach that 

provides flexibility, interoperability, and 
performance of C-based solutions with the 
more productive and intuitive syntax of 
library- and Python-based solutions

• Approach
§ Study, analyze, & educate on Chapel GPU for 

parallel & distributed CPU+GPU computing
• Intra-node parallelism across CPUs and GPUs from 

multiple vendors (unlike CUDA/HIP)
•Multi-node distribution of tasks without an add-on 

library like MPI (unlike CUDA/HIP/SYCL/OpenCL)
• Intuitive parallel abstractions like forall and 

automatically promoted and distributed array ops
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• Tasks 3a, 3b, and 3c
a) Stress-test and evaluate updated and new 

features of the Chapel 1.32 release
b) Profile & analyze performance of Chapel 1.32 

• Device:  NVIDIA GPU
(No support for other GPUs yet.) 

• Apps:  Jaccard similarity à
OpenDwarfs for Chapel 
(i.e., ChapelDwarfs)

• Environments:  Intra-node and inter-node

c) Testing, deployment, and education with Chapel 
1.32 for parallel computation class(es) at VT

Tasks:  Baseline and Optional



V1Task 4: Simultaneous Co-scheduling of Heterogeneity
(CPU+GPU+FPGA)

• Motivation (in Detail)
§ CPU typically idle when GPU executes kernel

• Why not distribute a portion of workload to CPU?!

• Our Prior Work
§ Automated distribution of workload of

regular apps for better performance
§ Context:  

• Proposed Research
§ Automated distribution of workload for

irregular apps for better performance
§ Context: 
§ Heterogeneity:  CPU+GPU, CPU+FPGA, CPU+GPU+FPGA
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GPU kernel
__global__ void(args)
{kernel code…}

CPU Idle

Data preprocessing
CPU à GPU data transfers
GPU kernel invocation

GPU Synchronization
GPU à CPU transfer of results
Post-processing 

CPU timeline GPU timeline

GPU Idle

GPU Idle



V1Task 4: Simultaneous Co-scheduling of Heterogeneity
(CPU+GPU+FPGA):  Irregular Apps

§ Jaccard similarity (JS) in graph datasets 
§ Parallel JS computation across all vertex pairs that 

form edges of the graph
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Graph Apps from IARPA AGILE Program [1] 

JS (Greek & Latin alphabet): 14/36 
=  38% similarity

Γ Δ
Θ Λ Ξ
Π Σ Φ
Ψ Ω

A B E
H I K M N 
O P
T X Y Z

C D
F G J L
Q R S
U V W

Greek alphabet Latin alphabet

Scientific Computing App 

§ Triangle counting (TC) in graph datasets
§ Evaluate the total number of unique triangles 

formed by the edges in the graph

§ Biconjugate gradient stabilized (BiCGSTAB) 
§ Sparse linear system solver with irregular memory access 

pattern
§ Used in computational fluid dynamics

Image source: https://www.computer.org/csdl/journal/td/2017/12/08000612/13rRUxYINeZ

[1]: https://www.iarpa.gov/images/PropsersDayPDFs/AGILE/AGILE_Program_Workflows_FINAL.pdf

https://www.computer.org/csdl/journal/td/2017/12/08000612/13rRUxYINeZ
https://www.iarpa.gov/images/PropsersDayPDFs/AGILE/AGILE_Program_Workflows_FINAL.pdf


V1Task 5: Auto-Generation of Source-to-Source Translators

§ Existing Source-to-Source Translators
§ OpenMP à CUDA, OpenCL, OpenACC, ISPC, MPI
§ OpenACC à OpenMP
§ CUDA à OpenCL, OpenMP, OpenACC, HIP
§ OpenCL à CUDA

§ Task 6a, 6b, 6c
a) Update CU2CL source-to-source translator from V1-12
b) Train NLP to auto-generate CUDA-to-OpenCL 

translator
c) Evaluate accuracy of original CU2CL to auto-

generated CU2CL on pre-existing suite of application 
codes

d) Assess efficacy of auto-generator for other 
languages
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§ Motivation
§ Too many heterogeneous programming languages 

& devices in legacy scientific code. Non-portable.
§ Alternative to “write once, run anywhere” 

languages? Source-to-source translation
• Examples:  CUDA to OpenCL; OpenMP to CUDA; etc., 

but such translators are MANUALLY coded.

§ Goal: Automatically generate such automated 
source-to-source translators

§ Approach
• Leverage abstract syntax trees (ASTs) to “structure” 

CUDA code, ensuring that translations respect domain 
knowledge and best practices.

• Combine neural machine translation (NMT) with neuro-
symbolic AI to decipher underlying logic of domain-
specific CUDA code, enabling more accurate translation.


