V1-24: High-Productivity Computing in **Heterogeneous Systems**

SHREC Annual Workshop (SAW23-24)

FLORIDA

January 17-18. 2024

Faculty: Wu Feng

Students: Patrick Dewey, Atharva Gondhalekar, Ritvik Prabhu, Rashmi Ravindranath, Paul Sathre, Frank Wanye, Mukund Yadav

Number of requested memberships ≥ 6

Goal

- Enable high-productivity computing in heterogeneous computing systems: CPU + {cpu, GPU, FPGA, TPU, ... }
 - Similar to DARPA <u>High-Productivity Computing Systems</u> program for <u>homogeneous</u> systems (e.g., Chapel, Fortress, X10) but for heterogeneous systems (e.g., Chapel, OpenCL, SYCL, oneAPI, VITIS)
 - Preferred Vehicle: Modern, Open Standard Languages & Runtimes
 - Case Studies: Applications and Benchmarks, e.g., Berkeley Dwarfs

 OpenDwarfs (@VT)

Write ONCE, run ANYWHERE!

Background & Motivation

 Extend our R&D to create and analyze an ecosystem of high-productivity tools, environments, and benchmarks for heterogeneous computing

- Challenges: How to productively ...
 - Program an application so it runs on many platforms?
 - Evaluate a processor architecture & compare it to others?
 - Develop back-end optimizations & know that they will work well?

Application-dependent

Recent Work: Performance & Productivity

Sobel Filter on Intel Arria 10, AMD Alveo U250, and NVIDIA RTX 3090

* Evaluated the same OpenCL kernel written for Arria 10 on U250 without any vendor-specific optimizations

 Rigorous Performance & Productivity Evaluation of Representative Apps (FFT, Jaccard similarity, biconjugate gradient stabilized method – BiCGSTAB, and graph algorithms) in Different Languages on Different Devices (CPUs, GPUs, and FPGAs)

(intel)

XEON[®]

OpenC

SYCL. PYNQ CHAPEL 🗯 PYNQ XILINX

oneAPT

BYU

FLORIDA

• University of

VIRGINIA TECH

Pittsburgh

Approach

- Implement a diverse set of *application benchmarks*
 - Regular vs irregular. Floating point vs integer. CPU- vs memory-intensive
- Characterize the *productivity* of a heterogeneous system
 - Kernel Development Time (KDT) \rightarrow Wall Clock Time
 - Source Lines Of Code (SLOC) and Code Convergence (CC)
- Characterize the *performance-vs-productivity* tradeoff
 - Performance Portability (\mathbf{P})
 - Performance-Productivity Product (Π)
- Identify the best platform and associated ecosystem for productivity, performance, or both (across many apps)
- Enable further high-productivity research: automated co-scheduling at runtime and auto-generation of translators ______ Open Source ______ Closed Source ______ Closed Source

Open**CL**

CHAPEL PYNQ

AMD RADEON PRO W7700

oneAPI

CUDA

Stratix 10

(2+1)

(2+1)

(2+1)

(0+2)

(0+2)

Proposed Tasks for V1-24

(Memberships: Mandatory + Optional, e.g., 2+1)

- Task 1: FPGA Productivity and Performance (Speed/Space/Power)
- Task 2: GPU Productivity and Performance (Speed/Power)
- Task 3: Chapel GPU Parallel & Distributed Programming: Study, Analysis, Outreach
- Task 4: Simultaneous Co-scheduling of Heterogeneous Devices: CPU+GPU+FPGA
- Task 5: Auto-Generation of Source-to-Source Translators
 - One of {CUDA-to-OpenCL, CUDA-to-OpenMP, CUDA-to-Chapel, CUDA-to-SYCL, ... }
 - Baseline: Update of CU2CL: <u>CU</u>DA-<u>to</u>-Open<u>CL</u> Source-to-Source Translation

Mission-Critical Computing NSF CENTER FOR SPACE, HIGH-PERFORMANCE, AND RESILIENT COMPUTING (SHREC)

UF

FLORIDA

Task 1: FPGA Productivity and Performance (Speed/Space/Power)

- Motivation
 - Multiple design-entry options (e.g., OpenCL, VITIS HLS, VITIS AI)
 - Performance & productivity tradeoffs of FPGA languages and tools relatively unknown
- Approach
 - Develop target apps via open-source & vendor toolchains
 - Evaluate performance & productivity of FPGA design options
- Tasks 1a, 1b, 1c: Productivity & performance of ...
 - a) Fast Fourier transform (FFT) with custom-length input via VITIS HLS
 - Target: Snickerdoodle board (ARM Cortex-A9 CPU + AMD Artix-7 FPGA)
 - b) Existing reinforcement learning (RL) model via VITIS AI toolchain
 - Target: Alpha Data PA100 (2x ARM Cortex-A72, 2x ARM Cortex-R5, 400x AI Engines)
 - c) FFT & RL via open-source toolchains, e.g., SYCL (currently unsupported)
 - d) "To-be-provided" RL model for inference

Tasks: Baseline & Optional (2+1)

Write Once, Run Anywhere? OpenCL and SYCL

Write once, run anywhere

8

Task 2: GPU Productivity and Performance (Speed/Power)

- Motivation
 - High Performance *but* Low Productivity: Low-level C/C++-based languages → CUDA, OpenCL, SYCL
 - High Productivity but Less Performant: (1) Vendor libraries & tools. (2) High-Productivity Lang.
 - Issues: (1) Non-portable libraries, e.g., CUDA libraries not portable to AMD hardware. (2) Lack of hardwaresoftware interface control to achieve high performance. (3) Rigidity of pipelines and data abstractions
- Approach

ssion-Critical Computing

Think AMD MI300 CPU+GPU and NVIDIA GH200 CPU+GPU

 $js(A,B) = \frac{|A \cap B|}{|A \cup B|}$

A O B

Fourier

- Evaluate 1st & 3rd-party solutions to reach more devices with less code (without sacrificing performance)
- First-party solutions? Translators, e.g., Intel's dpct (CUDA \rightarrow oneAPI/SYCL) or AMD's hipify (CUDA \rightarrow HIP)
- Third-party? Languages, e.g., Chapel, OpenCL, SYCL. Libraries, e.g., PyTorch, Apache Arrow, C++ std::par
- Tasks 2a, 2b, 2c: Productivity & performance of openCL (SYCL)
 - a) Jaccard similarity & other graph apps (e.g., Gunrock) \rightarrow parallel & distributed \bigcirc
 - b) Biconjugate gradient stabilized method (BiCGSTAB) OpenCL (SYCL.
 - c) Community detection \rightarrow graph clustering (see V3-24) \int_{OREAPI}
 - d) FFT with custom-length (non-power-of-two) input (SYCL.

Tasks: Baseline & Optional (2+1) Write Once, Run Anywhere?

⁹ OpenCL, SYCL, Chapel, oneAPI

Task 3: Study, Analysis, and Outreach for Chapel GPU

- Motivation
 - Chapel 1.0 (2009) to Chapel 1.26 (2022)
 - High-Productivity Computing for Parallel & Distributed **CPU** Computing → Alternative to MPI or MPI+OpenMP
 - Rise of GPU Computing (since 2007)
 - Low-Level Languages (CUDA, OpenCL, ...) + High-Level but Rigid/Non-Portable (PyTorch, cuBLAS, ...) Libraries
- Approach
 - Study, analyze, & educate community on Chapel GPU for parallel & distributed CPU+GPU computing
- Tasks 3a, 3b, and 3c
 - a) Stress-test and evaluate updated and new features of the Chapel 1.33+ releases
 - b) Profile & analyze performance of Chapel 1.33+ on NVIDIA GPU with Jaccard similarity & OpenDwarfs
 - Chapel runtime overheads, Intra-node parallelism and **inter-node parallelism** (*a la* OpenMP/OpenACC/CUDA and MPI, respectively)

10

- Conduct on AMD/Intel CPU and AMD/Intel GPU, as time & access permits
- c) Testing, deployment, and education with Chapel 1.33+ ... for parallel computation class(es) at VT

Tasks: Baseline & Optional (2 + 1)

Write Once, Run Anywhere? Chapel

(intel)

Task 5: Auto-Generation of Source-to-Source Translators

Motivation

- Too many heterogeneous programming languages & devices in legacy scientific code. Non-portable.
- Alternative to "write once, run anywhere" languages? Source-to-source translation
 - Examples: CUDA to OpenCL; OpenMP to CUDA; etc., but such translators are MANUALLY coded.
- Goal: Automatically generate such automated source-to-source translators Write Once, Run Anywhere via Source-to-Source Xlation
- Approach
 - Leverage abstract syntax trees (ASTs) to "structure" CUDA code, ensuring that translations respect domain knowledge and best practices.
 - Combine neural machine translation (NMT) with neurosymbolic AI to decipher underlying logic of domainspecific CUDA code, enabling more accurate translation.

Instead of manually creating CU2CL (from V1-12) and manually updating it when the clang ecosystem changes, *auto-generate the CU2CL source-to-source translator*.

- Task 5a, 5b, 5c (CUDA OpenCL OpenMCL OpenMCL OpenMCL OpenMCL OpenMCL OpenMCL OpenMCL OpenMCL
 - a) Update CU2CL source-to-source translator from V1-12
 - b) Train NLP to auto-generate CUDA-to-OpenCL translator
 - c) Evaluate accuracy of original CU2CL to auto-generated CU2CL on pre-existing suite of application codes
 - d) Assess efficacy of auto-generator for other languages

Tasks: Baseline & Optional (0+2)

12

Milestones, Deliverables, and Budget

- Major Milestones (Tasks: T1-T6)
 - T1: FPGA Productivity: **FFT via VITIS HLS+PYNQ and RL via VITIS AI**
 - T2: GPU Productivity: Jaccard Similarity & Other Graphs via OpenCL/SYCL
 - T3: Chapel 1.32: Synthesis and analysis of Jaccard similarity parallel and distributed
 - T4: Simultaneous Co-scheduling of Heterogeneity: CPU+GPU co-scheduling of irregular app
 - T5: Auto-Generation of Source-to-Source Translation: Al-generated CUDA-to-OpenCL translator

Deliverables

- Monthly progress reports, along with mid-year and end-of-year full reports
- 2-3 publications at top-tier conference venues or journals

Recommended Budget

- Minimum: 6 memberships (300 votes)
- Maximum: 13 memberships (650 votes)

Conclusion

- Enable high-productivity computing in heterogeneous computing systems: CPU + {cpu, GPU, FPGA, TPU, ... } via open standards: OpenCL, SYCL, Chapel, and to a lesser degree, oneAPI
- Evaluate performance & productivity of representative apps (OpenDwarfs, FFT, Jaccard similarity, biconjugate gradient stabilized method – BiCGSTAB, and graph algorithms) on different devices (CPUs, GPUs, and FPGAs)

Member Benefits

- Direct influence over processors & frameworks studied and apps & datasets used
- Direct benefit from new methods, tools, datasets, codes, models, and insights created as well as new metrics of evaluation
- Direct insights from R&D and analysis

APPENDIX

- 1. FPGA: Proprietary (RTL & HLS) vs. C/C++ (OpenCL/SYCL/oneAPI)
- 2. GPU: Low-Level SIMD (CUDA/OpenCL/SYCL) vs. High-Level SIMD (Chapel)
- 3. Open-Source Approach Leveraging Open Source: Evaluation Metrics
- 4. Open-Source Approach Leveraging Open Source
 - Enabling Further High-Productivity Research
- 5. Details for Task 2c: Graph Clustering via oneAPI/SYCL (Related to V2-24)
- 6. Details for Task 3: Study, Analysis, and Outreach for Chapel GPU
- 7. Details for Task 4: Simultaneous Co-scheduling of Heterogeneity (CPU+GPU+FPGA)
- 8. Details for Task 4: Simultaneous Co-scheduling of Heterogeneity (CPU+GPU+FPGA): Irregular Apps

FPGA: Proprietary (RTL & HLS) VS. C/C++ (OpenCL ...)

Low-Level RTL (Verilog/VHDL)

Pros

- Direct control over timing requirements and design
- Maximum performance via via HW-specific optimization

Cons

- SLOW development time
- Tedious to read & understand

"machine language"

- More error-prone
- NOT portable Verilog.

CPU GPU FPGA

Mid-Level HLS (VITIS HLS & AI)

Pros and **Cons**

Fairly slow development time

VITIS AL

- Less tedious to read & understand
- Fairly errorprone
- **NOT portable**
 - CPI **Still requires** low-level knowledge to prepare and invoke the kernel

High-Level C/C++ (OpenCL/SYCL)

Pros

- Easier to read and understand
- Less error-prone
- Portable (CPU, GPU, FPGA)

Cons

FPGA

GPL

- Limited control over timing requirements
- Performance loss due to overhead of high-level abstractions
- Mixed vendor support for open standards

"high-level language"

"assembly language"

GPU: CUDA/OpenCL/SYCL vs. Chapel (Parallel) (Parallel+Distributed)

Low-Level SIMD (CUDA/OpenCL/SYCL)

Pros

 Direct control over mapping. registers, and memory

 Maximum performance via hardware-specific optimization

Cons

Slower development time

- Tedious to read & understand
- Manual device/thread decomposition
- Manual distribution via MPI

High-Level SIMD+MIMD (Chapel)

Pros

Faster development time

- Easier to read and understand
- Automatic array/domain decomposition
- Natively extensible from CPU-parallel to heterogeneous-parallel and distributed

Cons

- Limited control over mapping, registers, and memory
- Performance loss due to overhead of high-level abstractions
- Limited developer resources and community

Performance Portability (\mathbf{P})

RESILIENT COMPUTING (SHREC)

Task 2c: Graph Clustering via oneAPI/SYCL

- Motivation
 - Accurate graph clustering → computationally expensive ×

- Available implementations of statistically robust graph clustering algorithms? CPU-oriented ×
 - Frontier supercomputer: 99% of FLOPS from GPUs
- Observation
 - CPU-only implementations sacrifice runtime gains of massively parallel GPUs (and low-power gains of FPGAs)
- Approach
 - Translate C++ graph clustering code (V2-24) to oneAPI/SYCL to run heterogeneously on CPU+GPU
 - Evaluate and compare runtime performance of C++ optimized CPU code to oneAPI/SYCL translation on different architectures: CPU-only, GPU-only, CPU+GPU, CPU+GPU with co-scheduling)

Networking/Finance Bioinformatics Image: Constraint of the second sec

Graph clustering \rightarrow use cases across many domains \checkmark

Intrusion/Fraud Detection

Epidemiology & Rece Drug Discovery S

Recommender Systems

Task 3: Study, Analysis, and Outreach for Chapel GPU

Motivation

- Chapel 1.30 (2023): Intro of GPU Support
- Need for a *portable high-level* approach that provides flexibility, interoperability, and performance of C-based solutions with the more productive and intuitive syntax of library- and Python-based solutions
- Approach
 - Study, analyze, & educate on Chapel GPU for parallel & distributed CPU+GPU computing
 - Intra-node parallelism across CPUs and GPUs from multiple vendors (unlike CUDA/HIP)
 - Multi-node distribution of tasks without an add-on library like MPI (unlike CUDA/HIP/SYCL/OpenCL)
 - Intuitive parallel abstractions like forall and automatically promoted and distributed array ops

- Tasks 3a, 3b, and 3c
 - a) Stress-test and evaluate updated and new features of the Chapel 1.32 release
 - b) Profile & analyze performance of Chapel 1.32
 - Device: NVIDIA GPU (No support for other GPUs yet.)
 - Apps: Jaccard similarity → OpenDwarfs for Chapel (i.e., ChapelDwarfs)
 - Environments: Intra-node and inter-node Frontier Compute Blade (Two Nodes)

The intersect of A & B

The union of A & B

division

c) Testing, deployment, and education with Chapel
 1.32 for parallel computation class(es) at VT

V1

Task 4: Simultaneous Co-scheduling of Heterogeneity (CPU+GPU+FPGA)

- Motivation (in Detail)
 - CPU typically idle when GPU executes kernel
 - Why not distribute a portion of workload to CPU?!
- Our Prior Work
 - Automated distribution of workload of regular apps for better performance
 - Context: OpenMP OpenACC
 Directors for Accelerators
- Proposed Research
 - Automated distribution of workload for irregular apps for better performance
 - Context:
 SYCL
 - Heterogeneity: CPU+GPU, CPU+FPGA, CPU+GPU+FPGA

Task 4: Simultaneous Co-scheduling of Heterogeneity (CPU+GPU+FPGA): Irregular Apps

Graph Apps from IARPA AGILE Program [1]

- Jaccard similarity (JS) in graph datasets
 - Parallel JS computation across all vertex pairs that form edges of the graph

[1]: <u>https://www.iarpa.gov/images/PropsersDayPDFs/AGILE/AGILE_Program_Workflows_FINAL.pdf</u>

- Triangle counting (TC) in graph datasets
 - Evaluate the total number of unique triangles formed by the edges in the graph

Image source: https://www.computer.org/csdl/journal/td/2017/12/08000612/13rRUxYINeZ

Scientific Computing App

- Biconjugate gradient stabilized (BiCGSTAB)
 - Sparse linear system solver with irregular memory access pattern
 - Used in computational fluid dynamics

ion-Critical Computing

V1

Task 5: Auto-Generation of Source-to-Source Translators

Motivation

- Too many heterogeneous programming languages & devices in legacy scientific code. Non-portable.
- Alternative to "write once, run anywhere" languages? Source-to-source translation
 - Examples: CUDA to OpenCL; OpenMP to CUDA; etc., but such translators are MANUALLY coded.
- Goal: Automatically generate such automated source-to-source translators
- Approach
 - Leverage abstract syntax trees (ASTs) to "structure" CUDA code, ensuring that translations respect domain knowledge and best practices.
 - Combine neural machine translation (NMT) with neurosymbolic AI to decipher underlying logic of domainspecific CUDA code, enabling more accurate translation.

- Existing Source-to-Source Translators
 - OpenMP → CUDA, OpenCL, OpenACC, ISPC, MPI
 - OpenACC \rightarrow OpenMP
 - CUDA → OpenCL, OpenMP, OpenACC, HIP
 - OpenCL \rightarrow CUDA
- Task 6a, 6b, 6c
 - a) Update CU2CL source-to-source translator from V1-12
 - b) Train NLP to auto-generate CUDA-to-OpenCL translator
 - c) Evaluate accuracy of original CU2CL to autogenerated CU2CL on pre-existing suite of application codes
 - d) Assess efficacy of auto-generator for other languages

