&A‘

ational Science Foundation’s |£&% Industry/ Gniversity Cooperative Research (I/UCRC) Prograrﬁf’:"\ S)h

V1-24: High-Productivity Computing in
Heterogeneous Systems

NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC)

Faculty: Wu Feng

Students: Patrick Dewey, Atharva Gondhalekar,

S iy of BYU Ritvik Prabhu, Rashmi Ravindranath, Paul Sathre,
Plttsbul‘gh Frank Wanye, Mukund Yadav
vr UF

FLORIDA Number of requested memberships = 6
January 17-18, 2024

Goal

= Enable high-productivity computing in heterogeneous computing systems:

CPU + {cpu, GPU, FPGA, TPU, ...}

= Similar to DARPA High-Productivity Computing Systems program for homogeneous systems (e.g.,
Chapel, Fortress, X10) but for heterogeneous systems (e.g., Chapel, OpenCL, SYCL, oneAPI, VITIS)

* Preferred Vehicle: Modern, Open Standard Languages & Runtimes
= Case Studies: Applications and Benchmarks, e.g., Berkeley Dwarfs = OpenDwarfs (@ VT)

Write ONCE, run ANYWHERE!

4 N
PROGRAMMING ECOSYSTEMS

@CL :‘% @ . |i: XILINX
oneAPI y

OpenMP ~ VEE

<ANVIDIA. =
OpenACC [N PYNQ. | opence

. L. . University of BYU
Mission-Critical Computing 2 Pittsburgh suona vous
NSF CENTER FOR SPACE, HIGH-PERFORMANCE, QT UF

AND RESILIENT COMPUTING (SHREC)
VIRGINIATECH. ~ mvessiy 7
FLORIDA

Background & Motivation

= Extend our R&D to create and analyze an ecosystem of high-productivity tools,

environments, and benchmarks for heterogeneous computing

a 4
TOOLS & ENVIRONMENTS - BENCHMARKS

\

J

PROGRAMMING ECOSYSTEMS m
PYNQ™ 7o, (GYCL. sMPI | OpenAcC

E~ oea I §UMs RE
= Challenges: How to productively ... iy
= Program an application so it runs on many platforms?
= Evaluate a processor architecture & compare it to others? >~ Application-dependent
= Develop back-end optimizations & know that they will work well?

i) University of BYU
Pittsburgh BRIGHAM YOUNG
NSF CENTER FOR SPACE, HIGH-PERFORMANCE, 3
AND RESILIENT COMPUTING (SHREC) \\5 Z;

FLORIDA

Recent Work: Performance & Productivity
= Sobel Filter on Intel Arria 10, AMD Alveo U250, and NVIDIA RTX 3090

Sobel Filter on Device
3840 %X 2160 I
Image Intel Arria 10 (FPcA) |AMD Alveo U250 (FPcA)| NVIDIA RTX 3090 (GPU) fps:
_ . : frames
Dev Time Dev Time Dev Time =
Language (hrs) (hrs) fps (hrs) per
: : . : : second
Verilog 132.6 | 429 305 (Not implemented in Verilog| Not functional on GPU
OpenCL 85.6 | 270 50 275 — | 141.4 254 _ OpenCL & SYCL:
Write once,
oneAPl = SYCL 21.4 139 20 || No support for oneAPI 133.1 135 - run anywhere

* Evaluated the same OpenCL kernel written for Arria 10 on U250 without any vendor-specific optimizations

= Rigorous Performance & Productivity Evaluation of Representative Apps
(FFT Jaccard similarity, biconjugate gradlent stabilized method BiCGSTAB, and graph algorlthms)

W XILINX

PYNQ™ Q. VITIS

GreL #a (e

OpenCL oneAPI

fassde,

BYU
' Pittsburgh ;

o 2 /
= ,. —_— "-c{.-v
e —— '“\;) be ! i}‘p e ")
I = d nviDia / \
i i PRO W7700 /s . "_.‘ b % |
': i el - — S Y @ ¥ =
‘ | gL Pl I a N 2 .
inside" - % . e ——————————
S it A= s
e e University of
I \'*R\('w UNG
NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC)
FLORIDA

\/d UF

Approach [crvoz

RADJ=0N

PRO W7700 s

Implement a diverse set of application benchmarks
= Regular vs irregular. Floating point vs integer. CPU- vs memory-intensive

Characterize the productivity of a heterogeneous system
= Kernel Development Time (KDT) = Wall Clock Time

= Source Lines Of Code (SLOC) and Code Convergence (CC)
Characterize the performance-vs-productivity tradeoff

= Performance Portability (P)

» Performance-Productivity Product (IT)

Identify the best platform and associated ecosystem
for productivity, performance, or both (across many apps)

* Enable further high-productivity research: automated co-scheduling at runtime and

auto-generation of translators Open Source Closed Source
W XILINX

77"a ~ - £ &L VITIS
>§< OpenCL @CLW @ PYNQ. oneAPI

AND RESILIENT COMPUTING (SHREC) DATA PARALLEL G++

sssfs.

Proposed Tasks for V1-24

(Memberships: Mandatory s €.y 27)

 Task 1: FPGA Productivity and Performance (Speed/Space/Power) (2 1)

 Task 2: GPU Productivity and Performance (Speed/Power) (2 1)

* Task 3: Chapel GPU Parallel & Distributed Programming: Study, Analysis, Outreach
(2)

* Task 4: Simultaneous Co-scheduling of Heterogeneous Devices: CPU+GPU+FPGA
(0+)

» Task 5: Auto-Generation of Source-to-Source Translators (o+)

= One of {CUDA-to-OpenCL, CUDA-to-OpenMP, CUDA-to-Chapel, CUDA-to-SYCL, ...}
= Baseline: Update of CU2CL: CUDA-to-OpenCL Source-to-Source Translation

i) University of BYU
Pittsburgh BRIGHAM YOUNG
NSF CENTER FOR SPACE, HIGH-PERFORMANCE, 6
AND RESILIENT COMPUTING (SHREC) \\5 zi UF
FLORID)

v
RIDA

Task 1: FPGA Productivity and Performance (Speed/Space/Power)

OpenCL Development Flow

Host (CPU) code
development

\ 4

()
Kernel (FPGA code)

/77"a | development
OpenCL |

Debugging and
simulation

~

A 4

<
Compile for FPGA
L hardware and run)

OpenCL dev - less manual
intervention needed compared
to VITIS HLS and VITIS Al

VITIS HLS Development Flow

s

Testbench development

. J

v
Top-level function
developmentin C

v

Simulation
v

C + RTL co-simulation
v
Synthesis
v
IP generation

'

Configure host ecosystem
with IP in VIVADO

- J

\4

PYNQ™

VITIS Al Development Flow

:. Design Model in TF/Torch

Train+Test Model on xPU

L

Deep Learning
Model

Export Model

A

Optimize Model

b4) A4
& | Quantize Model

Compile Model

Model Preparation

\ 4

Package Model

PYNQ Import PYNQ DPU Overlay

DPU Wrapper

Import Model for Inference

Mission-Critical Computinc
NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC)

H i) niversity of BYU
Write Once, Run Anywhere? OpenCL and PYNQ & Bihigh oo

VIRGINIATECH. ~ wuveeny

Task 1: FPGA Productivity and Performance (Speed/Space/Povm

* Motivation FPGA Vendor Language & Tools
= Multiple design-entry options (e.g., OpenCL, VITIS HLS, VITIS Al) and Type openc | 2 | VP
- Performan.ce & productivity tradeoffs of FPGA languages and [,/ - server-grade v | v X
tools relatively unknown
AMD embedded x \/ x
* Approach . _
)) AMD with deep-learning
= Develop target apps via open-source & vendor toolchains processor units (DPUs) X |V|V
" Evaluate performance & productivity of FPGA design options | tel server-grade v | X | X
e Tasks 149, 1b, 1C: PrOdUCtiVity & performance of ... v/ Supported X Unsupported
a) Fast Fourier transform (FFT) with custom-length input via VITIS HLS Reinforcement
* Target: Snickerdoodle board (ARM Cortex-A9 CPU + AMD Artix-7 FPGA) FFT: Power of 2 vs Learning -
Non-power of 2 LunarLander

b) Existing reinforcement learning (RL) model via VITIS Al toolchain
* Target: Alpha Data PA100 (2x ARM Cortex-A72, 2x ARM Cortex-R5, 400x Al Engines)

c) FFT & RL via open-source toolchains, e.g.,[SYCL (currently unsupported)]

Fourier
Transform

s

d) “To-be-provided” RL model for inference [Write once, run anywhere ’

NSF CENTER FOR SPACE, HIGH-PERFORMANCE,

AND RESILIENT COMPUTING (SHREC) (2 + 1) 8 :Z UF
VIRGINIA TECH

uuuuuuuuuu

:%(Critical Computing 1@SKs: Baseline & Optional Write Once, Run Anywhere? OpenCLand SYCL & Bimbuah oo

Task 2: GPU Productivity and Performance (speed/Power)

 Motivation

= High Performance but Low Productivity: Low-level C/C++-based l[anguages = CUDA, OpenCL, SYCL

= High Productivity but Less Performant: (1) Vendor libraries & tools. (2) High-Productivity Lang.

* Issues: (1) Non-portable libraries, e.g., CUDA libraries not portable to AMD hardware. (2) Lack of hardware-
software interface control to achieve high performance. (3) Rigidity of pipelines and data abstractions

* Approach Think AMD MI300 CPU+GPU and NVIDIA GH200 CPU+GPU
= Evaluate 15t & 37-party solutions to reach more devices with less code (without sacrificing performance)
= First-party solutions? Translators, e.g., Intel’s dpct (CUDA->0oneAPI/SYCL) or AMD’s hipify (CUDA->HIP)
* Third-party? Languages, e.g., Chapel, OpenCL, SYCL. Libraries, e.g., PyTorch, Apache Arrow, C++ std::par

» Tasks 23, 2b, 2¢: Productivity & performance of openct (SYCL. (= ““:\‘px Aanel
a) Jaccard similarity & other graph apps (e.g., Gunrock) - parallel & distributed & #mp1

1A nB|

b) Biconjugate gradient stabilized method (BiCGSTAB) ©penct (SYCL. A8 = G
¢) Community detection = graph clustering (see V3-24) i SYCL. |

I My
PI E e[|t
£ \

d) FFT with custom-length (non-power-of-two) input GveL

Mission-Critical Computing ~ 1@sks: Baseline & Optional Write Once, Run Anywhere?
NSF CENTER FOR SPACE, HIGH-PERFORMANCE, (2 + 1) 9 Open(:l_’ SYCL, Chapel’ OneAPI

AND RESILIENT COMPUTING (SHREC)

V1
Task 3: Study, Analysis, and Outreach for Chapel GPU -

* Motivation /C“\
= Chapel 1.0 (2009) to Chapel 1.26 (2022) =

* High-Productivity Computing for Parallel & Distributed CPU Computing = Alternative to MPI or MPI+OpenMP
= Rise of GPU Computing (since 2007)
* Low-Level Languages (CUDA, OpenCL, ...) + High-Level but Rigid/Non-Portable (PyTorch, cuBLAS, ...) Libraries
* Approach
= Study, analyze, & educate community on Chapel GPU for parallel & distributed CPU+GPU computing

e Tasks 3a, 3b, and 3c
a) Stress-test and evaluate updated and new features of the Chapel 1.33+ releases

b) Profile & analyze performance of Chapel 1.33+ on NVIDIA GPU with Jaccard similarity & OpenDwarfs

* Chapel runtime overheads, Intra-node parallelism and inter-node parallelism (a la Openl\/l P/OpenACC/CUDA
and MPI, respectively) - co—

* Conduct on AMD/Intel CPU and AMD/Intel GPU, as time & access permlts

c) Testing, deployment, and education with Chapel 1.33+
.. for parallel computation class(es) at VT

Mission-Critical Computing 1aSKS: Baseline & Optional Write Once, Run Anywhere? Chapel W Biafitgh mmonae
NSF CENTER FOR SPACE, HIGH-PERFORMANCE, (> +1) 10 \V/7al UF

AND RESILIENT COMPUTING (SHREC)

uuuuuuuuuu

FLORIDA

Task 4: Simultaneous Co-scheduling of Heterogeneit

(CPU+GPU+FPGA) - Details in Appendix .
Traditional

* Motivation: Why Traditional Processor Scheduling? Sf:'ff”"",g’
ernel,
= Physiologically, left & right brain used simultaneously

|

1l

then GPU
s . .. kernel
= Silicon-wise, use CPU & GPU brain simultaneously
... and even FPGA. (CPU+GPU integration, too!)
= CoreTSAR: Past R&D on CPU+GPU co-scheduling of regular apps via OpenMP

» Approach Think AMD MI300 and NVIDIA GH200 CPU+GPU OpenMP 0P

= CoreTSAR++: Generalize co-scheduling for multi-heterogeneity

(CPU+GPU+FPGA) and to support regular & irregular workloads
with data-dependent memory access patterns

= Task 53, 5b, 5¢: CoreTSAR++ Exploration (SYCL.

a) ldentify & implement appropriate irregular apps to co-schedule

rrrrrrrrrrrrrrrrrrrrrr

b) Manually implement & evaluate co-scheduled irregular apps e Al i -2

c) Automate co-scheduling on heterogeneous system (CPU+GPU+...) |= NN, . L 0

d) Investigate simultaneous co-scheduling using Chapel @=E : @ﬁg 0
Mission-Critical Computing 1@Sks: Baseline & Optional = e

NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC)

4

(0+2) 1

Write Once, Run Anywhere? SYCL

Triangle counting

54%

v

Co-Scheduling:

CPU & GPU —

kernels
simultaneously

tors

RIGHT-BRAINED
Emotional

rtistic
Intuitive

46%

»
»

time

Jaccard similarity

10

Sparse linear solver = Biconjugate gradient stabilized

0 cos 0 [I5] f1
-2 1 0 “cee 0 U9 fg
1 -2 1 ... 0 ug f3
...... 1 -2 1 UN-3 fn-3
......... 1 -2 U2 f‘\; 2
i) University of BYU
Pittsburgh sicimouse
and Chapel v UF

uuuuuuuuuu

Task 5: Auto-Generation of Source-to-Source Translatorm

Libraries Used

= Motivation Clang
. h - “Fies. Framework Lex,
Too many heterogeneous programming languages TAST AST Rewrite ==\
& devices in legacy scientific code. Non-portable. openc 1
1 ¢“ i " Clang Traverse | | Identify l Rewrite | [| Files
= Alternative to “write once, run anywhere ; @ﬂ—»
. Driver R
languages? Source-to-source translation e CU2CL —lopenct 1
o?nrauc e :i _aex reeevice rchitecture Kﬁrgse !
* Examples: CUDA to OpenCL; OpenMP to CUDA, etc., 1 Open Computing Language /‘ "

but such transl.ators are MANUALLY coded. Instead of manually creating CU2CL (from V1-12) and
= Goal: Automatically generate such automated manually updating it when the clang ecosystem changes,

source-to-source translators write Once, Run Anywhere auto-generate the CU2CL source-to-source translator.

. Approach via Source-to-Source Xlatlon. ek b - ‘ OpenCL OpenACC nr%m
ask 53, 5b, 5¢ (& CA SYCL. (GPIR. OpenMIP ,

* Leverage abstract syntax trees (ASTs) to “structure”
CUDA code, ensuring that translations respect domain
knowledge and best practices.

« Combine neural machine translation (NMT) with neuro-

symbolic Al to decipher underlying logic of domain-
specific CUDA code, enabling more accurate translation. d) Assess efficacy of auto-generator for other languages

a) Update CU2CL source-to-source translator from V1-12
b) Train NLP to auto-generate CUDA-to-OpenCL translator

c) Evaluate accuracy of original CU2CL to auto-generated
CU2CL on pre-existing suite of application codes

. U
Mission-Critical Computing 1aSKs: Baseline & Optional Enable software migration & massive B Bitn oo
12 code reuse across supercomputers

NSF CENTER FOR SPACE, HIGH-PERFORMANCE, (0 + 2)

AND RESILIENT COMPUTING (SHREC)
VIRGINIATECH. ~ mvessiy
FLORIDA

Milestones, Deliverables, and Budget

= Major Milestones (Tasks: T1-T6)

= T1: FPGA Productivity: FFT via VITIS HLS+PYNQ and RL via VITIS Al

= T2: GPU Productivity: Jaccard Similarity & Other Graphs via OpenCL/SYCL
= T3: Chapel 1.32: Synthesis and analysis of Jaccard similarity — parallel and distributed

" T4: Simultaneous Co-scheduling of Heterogeneity: CPU+GPU co-scheduling of irregular app

= T5: Auto-Generation of Source-to-Source Translation: Al-generated CUDA-to-OpenCL translator

A

* Deliverables
= Monthly progress reports, along with mid-year and end-of-year full reports W
= 2-3 publications at top-tier conference venues or journals &

* Recommended Budget
= Minimum: 6 memberships (300 votes)
= Maximum: 13 memberships (650 votes)

N . . Un'iversitycf
2%3® Mission-Critical Computing Pittsburgh suona vous

NSF CENTER FOR SPACE HIGH-| PERFOBMANCE 1 3
@ AND RESILIENT COMPUTING (SHREC) x Z
VIRGINIA TECH

uuuuuuuuuuuu

Conclusion

= Enable high-productivity computing in heterogeneous computing systems:
CPU + {cpu, GPU, FPGA, TPU, ... } via open standards: OpenCL, SYCL, Chapel,

and to a lesser degree, oneAPI

= Evaluate performance & productivity of representative apps (OpenDwarfs, FFT,
Jaccard similarity, biconjugate gradient stabilized method — BiCGSTAB, and graph

algorithms) on different devices (CPUs, GPUs, and FPGAs)

Member Benefits

» Direct influence over processors & frameworks studied and apps & datasets used

» Direct benefit from new methods, tools, datasets, codes, models, and insights
created as well as new metrics of evaluation

= Direct insights from R&D and analysis
By o

NSF CENTER FOR SPACE, HIGH-PERFORMANCE, 14
AND RESILIENT COMPUTING (SHREC) V?
VIRGINIA TECH FLORIDA

o Jp—r——

APPENDIX

FPGA: Proprietary (RTL & HLS) vs. C/C++ (OpenCL/SYCL/oneAPl)
GPU: Low-Level SIMD (CUDA/OpenCL/SYCL) vs. High-Level SIMD (Chapel)
Open-Source Approach Leveraging Open Source: Evaluation Metrics

Open-Source Approach Leveraging Open Source
= Enabling Further High-Productivity Research

Details for Task 2c: Graph Clustering via oneAPI/SYCL (Related to V2-24)
Details for Task 3: Study, Analysis, and Outreach for Chapel GPU
Details for Task 4: Simultaneous Co-scheduling of Heterogeneity (cPu+GPU+FPGA)

Details for Task 4: Simultaneous Co-scheduling of Heterogeneity (cPu+GPU+FPGA):
Irregular Apps

i) University of BYU
Pittsburgh BRIGHAM YOUNG
EEEEEEEEEEEEEEEEE , HIGH-PERFORMANCE, 15
NNNNNNNNNNNNNNNNNNNNN (SHREC) \\5 Z
FLORIDA

B~ wh =

© N O

FPGA: Proprietary (RTL & HLS) vs. C/C++ (OpencCL ...)

Low-Level RTL (Verilog/VHDL)

requirements and design

® Maximum performance via
via HW-specific optimization

Cons
" SLOW development time
® Tedious to read & understand
" More error-prone
" NOT portable Verilog

“machine language”

Mid-Level HLS (vITIS HLS & AI)

Pros and Cons
" Fairly slow development time
® | esstedious to read
& understand
® Fairly error-
prone

" NOT portable

= Still requires

low-level knowledge to prepare
and invoke the kernel

VITIS

“assembly language”

High-Level C/C++ (OpencL/sycL)

Pros

Cons

Faster development time {9
Easier to read and understand
Less error-prone

(CPU, GPU, FPGA) 5 OAL

Portable

Limited control over timing
requirements

Performance loss due to
overhead of high-level abstractions
Mixed vendor support for open
standards

“high-level language”

NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC)

16

3 University of BYU
Pittsburgh swarnvoune

VIRGINIA TECH

uuuuuuuuuu

GPU: CUDA/OpenCL/SYCL vs. Chapel

(Parallel)

(Parallel+Distributed)

Low-Level SIMD (CUDA/OpenCL/SYCL)

Pros

" Direct control over mapping. .
registers, and memory

® Maximum performance via :fgé
hardware-specific optimization 7

Cons

= Slower development time ’ :

" Tedious to read & understand 26.2

® Manual device/thread decomposition

® Manual distribution via MPI

CUDA
!lCL

IDIA
U

High-Level SIMD+MIMD (Chapel)

Pros .

" Faster development time {4/

® Easier to read and understand

® Automatic array/domain decomposition

= Natively extensible from CPU-parallel to
heterogeneous-parallel and distributed

Cons

" Limited control over mapping, registers,
and memory

" Performance loss due to
overhead of high-level abstractions || r

® Limited developer resources and
community

4

NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC)

17

i) University of
Pittsburgh s

VIRGINIA TECH

1AM YOUNG

uuuuuuuuuu

Open-Source Approach
P . pproac GveL.
AMD {1 @ KHRCONOS

G ROU

< NVIDIA.

One-MKL St C lex ML frameworks
: : andard C++ omp
One-DNN |:> C++ Libraries [> licati ML Frameworks T can be directly compiled
OneDPC Application Code TensorFlow and accelerated

SYCL-BLAS]
SYCL-Eigen \}

SYCL-DNN (

SYCL Parallel STL C++ Template C++ Template C++ Template C++ templates and lambda
- : : 5 . ; functions separate host &
s Libraries Libraries Libraries accelerated device code

[
> 9 C++ Kernel Fusion can s Py
. (| give better performance 2 1 { [/ i w
C/C++ with Host FPGA ¢/C++ [OpenCL on complex apps and (SYCL SYCL Compiler CPU Compiler M l “f
e Source Code VM \6cC) visyalC++ |
Application Kernels A 7

OpenCL API libs than hand-coding .

C++ bindings supported | - -) \[} {} \

O | ot || OtherBackends | | cPu |
AMD1 : .4 - ¥ SYCL is ideal f lerati
a Compile Compile Acceleratsd cod < is ideal for accelerating
Build Steps : (intel)’ . Build Steps pascggdelr:t[s dé\?:cg [SEY M cPu rii[hiDSP ” FPGA) C++ based engines and applications
gCC, gH++ : Sroia : Vi OpenCL compilers ‘ Al/Tensor HW “ Custom Hardware | with performance portability
Link ¥ XILINX Link
a VITIS

FPGA Binary

Host Applicati ; . . N R
e (xclbin) Possible for hybrid Evaluation Metrics
(.exe) OpenCL/SYCL+RTL

| @ m * Kernel Development Time

| PEE Verilo « Source Lines of Code (SLOC

| & ﬁ W R ()
* Code Convergence (CC)

Mission-Critical Computing * Performance-Productivity Product (PPP)
AND RESLIENT COMPUTING (SHREC) 18 * Performance Portability (P)

Open-Source Approach

with

)penCL AP

(1 ‘r\

| Source Code

Build Steps

gCC, g++

Host Application
Executable

(.ex

xe)

i
a

AMD

C,
Lo

Build Steps
V++

FPGA Binary

(.xclbin)

NVIDIA.

~+ /OpencCL/

C++ Template
Libraries

SYCL Compiler

OpenCL

Possible for hybrid
OpenCL/SYCL+RTL

Verilog ™

" RTL

KHRCONOS

C++ Template C++ Template
Libraries Libraries

CPU Compiler by A
o Visual C++

Enabling more high-productivity research

* Automated co-scheduling of heterogeneous
devices (i.e., CPU, GPU, FPGA, etc.)

* Auto-generation of automated translators

niversity of U
P 1ttsburgh BRIGHAM YOUNG

4

Mission-Critical Computing
NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC)

19

uuuuuuuuuu

VIRGINIA TECH FLORIDA

Task 2c: Graph Clustering via oneAPI/SYCL

. . Q‘. i Graph clustering = use cases across many domains v
« Motivation § % P & y

= Accurate graph clustering - ég

computationally expensive %

Networking/Finance Bioinformatics Social media

y & L
— \Visorr
a { ;

= Available implementations of statistically robust graph
clustering algorithms? CPU-oriented %

* Frontier supercomputer: 99% of FLOPS from GPUs

Intrusion/Fraud Epidemiology & Recommender
* Observation Detection Drug Discovery Systems

= CPU-only implementations sacrifice runtime gains of
massively parallel GPUs (and low-power gains of FPGAS)
* Approach

= Translate C++ graph clustering code (V2-24) to oneAPI/SYCL to run heterogeneously on CPU+GPU

= Evaluate and compare runtime performance of C++ optimized CPU code to oneAPI/SYCL translation on
different architectures: CPU-only, GPU-only, CPU+GPU, CPU+GPU with co-scheduling)

. - - ANL University of BYU
3® Mission-Critical Computing Pittsburgh BRIGHAN YOUNG
|) |
' NSF CENTER FOR SPACE, HIGH-PERFORMANCE, 20 UF
VIRGINIA TECH

AND RESILIENT COMPUTING (SHREC)

Task 3: Study, Analysis, and Outreach for Chapel GPU

* Motivation » Tasks 3a, 3b, and 3c
= Chapel 1.30 (2023): Intro of GPU Support a) Stress-test and evaluate updated and new
= Need for a portable high-level approach that features of the Chapel 1.32 release
provides flexibility, interoperability, and b) Profile & analyze performance of Chapel 1.32
performance of C-based solutions with the e Device: NVIDIA GPU
more productive and intuitive syntax of (No support for other GPUs yet.) (G)
library- and Python-based solutions i * Apps: Jaccard similarity 2>
OpenDwarfs for Chapel
) ApproaCh (i.e., ChapelDwarfs) (e)
" Study, analyze, & educate on Chapel GPU for * Environments: Intra-node and inter-node
parallel & dlStrlbUted CPU+GPU COmpUtlng Frontier Compute Blade (Two Nodes)

Kour AW V200 GAM

* Intra-node parallelism across CPUs and GPUs from
multiple vendors (unlike CUDA/HIP)

* Multi-node distribution of tasks without an add-on

library like MPI (unlike CUDA/HIP/SYCL/OpenCL) A== W
c) Testing, deployment, and education with Chapel

1.32 for parallel computation class(es) at VT

o vmow e

L

* Intuitive parallel abstractions like forall and
automatically promoted and distributed array ops

YU
Mission-Critical Computing ’ Plttsburgh 7

@ NSFCENTER FOR g:ﬂ;}’clﬁmgl(ié:ﬁgnMANcE, Tas kS : Base l Ine an d @) ptl Oona I 21 Y72k UF

uuuuuuuuuu

FLORIDA

Task 4: Simultaneous Co-scheduling of Heterogeneity

(CPU+GPU+FPGA)
 Motivation (in Detail) CPU timeline GPU timeline
= CPU typically idle when GPU executes kernel g oreprocessing
* Why not distribute a portion of workload to CPU?! CPU = GPU data transfers GPU Idle
e Our Prior Work GPU kernel invocation

.) GPU kernel
= Automated distribution of workload of CPU Idle _ global__ void(args)
regular apps for better performance {kernel code... }
= Context: QpenMP OpenACC GPU Synchronization
GPU = CPU transfer of results GPU IdI
= Automated distribution of workload for

irregular apps for better performance
= Context: {SYCL.

" Heterogeneity: CPU+GPU, CPU+FPGA, CPU+GPU+FPGA

i) University of BYU
Pittsburgh BRIGHAM YOUNG
NSF CENTER FOR SPACE, HIGH-PERFORMANCE, 22
AND RESILIENT COMPUTING (SHREC) \\5 Z;

FLORIDA

Task 4: Simultaneous Co-scheduling of Heterogeneity
(CPU+GPU+FPGA): Irregular Apps

Graph Apps from IARPA AGILE Program [1]

= Jaccard similarity (JS) in graph datasets * Triangle counting (TC) in graph datasets

= Parallel JS computation across all vertex pairs that = Evaluate the total number of unique triangles
form edges of the graph formed by the edges in the graph

2% Thread ID 0

Greek alphabet Latin alphabet

JS (Greek & Latin alphabet): 14/36
- 38% Similarity Image source: https://www.computer.org/csdl/journal/td/2017/12/08000612/13rRUXYINeZ

[1]: https://www.iarpa.gov/images/PropsersDayPDFs/AGILE/AGILE_Program_Workflows FINAL.pdf

Scientific Computing App

= Biconjugate gradient stabilized (BiCGSTAB) T e e .
= Sparse linear system solver with irregular memory access = S Zi ﬂ
pattern = S S

= Used in computational fluid dynamics o o LU e

3 University of BYU
Pittsburgh swarnvoune

C | Computin 23
NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC) x Z
VIRGINIA TECH HORTEA

https://www.computer.org/csdl/journal/td/2017/12/08000612/13rRUxYINeZ
https://www.iarpa.gov/images/PropsersDayPDFs/AGILE/AGILE_Program_Workflows_FINAL.pdf

Task 5: Auto-Generation of Source-to-Source Translatom

= Motivation J OpencL OpenliP GycL. . @ OpenAcC (GPIR.

= Too many heterogeneous programming languages

& devices in legacy scientific code. Non-portable. ™ EXisting Source-to-Source Translators

= Alternative to “write once, run anywhere” " OpenMP = CUDA, OpenCL, OpenACC, ISPC, MPI

languages? Source-to-source translation " OpenACC 2 OpenMP
* Examples: CUDA to OpenCL; OpenMP to CUDA,; etc., " CUDA = OpenCL, OpenMP, OpenACG, HIP
but such translators are MANUALLY coded. = OpenCL - CUDA

= Goal: Automatically generate such automated = Task 63, 6b, 6¢

source-to-source translators a) Update CU2CL source-to-source translator from V1-12

. Approach b) Train NLP to auto-generate CUDA-to-OpenCL

* Leverage abstract syntax trees (ASTs) to “structure” translator

CUDA code, ensuring that translations respect domain c) Evaluate accuracy of original CU2CL to auto-

knowledge and best practices. generated CU2CL on pre-existing suite of application
* Combine neural machine translation (NMT) with neuro- codes

symbolic Al to decipher underlying logic of domain- d) Assess efficacy of auto-generator for other

specific CUDA code, enabling more accurate translation. languages

. . . Gversiyet BYU
Mission-Critical Computlng Plttsburgh BRIGHAM YOUNG
NSF CENTER FOR SPACE, HIGH-PERFORMANCE, 24
AND RESILIENT COMPUTING (SHREC) W

VIRGINIA TECH i:'tb"ﬁibA

