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Abstract—It is well known that SRAM-based FPGAs are sus-
ceptible to single-event upsets (SEUs) in radiation environ-
ments. A variety of mitigation strategies have been demon-
strated to provide appropriate mitigation and correction of
SEUs in these environments. While full mitigation of SEUs
is appropriate for some situations, some systems may tolerate
SEUs as long as these upsets are detected quickly and cor-
rectly. These systems require effective error detection tech-
niques rather than costly error correction methods. This work
leverages a well-known error detection technique for FPGAs
called duplication with compare (DWC). This technique has
been shown to be very effective at quickly and accurately de-
tecting SEUs using fault injection and radiation testing.
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1. INTRODUCTION

Reprogrammable field programmable gate arrays (FPGAs)
are increasingly being used in space-destined systems be-
cause of their reconfigurability, density, and performance [1],
[2], [3]. They provide application-specific performance while
preserving flexibility. The ability to repeatedly reconfigure an
FPGA can extend mission lifetime by allowing a single sys-
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tem to perform various tasks at different times. In addition,
the use of FPGAs reduces the overall non-recurring engineer-
ing (NRE) costs involved in producing such a system.

While FPGAs offer many advantages for space-based mis-
sions, they are susceptible to radiation effects. FPGAs are
especially susceptible to single-event upsets (SEUs) because
of the large number of internal memory elements. SEUs can
occur within user flip-flops, application block memory, and
the configuration memory of an FPGA. SEUs that occur in
the configuration memory of an FPGA are the most problem-
atic as these upsets may alter the functionality of the FPGA
circuit.

FPGAs that are used in radiation environments must address
this issue with appropriate mitigation techniques. The most
common mitigation technique is triple modular redundancy
(TMR) [4]. TMR can effectively mask all circuit errors
caused by single event upsets. When used in conjunction with
configuration scrubbing, TMR is an effective technique for
mitigating upsets within the configuration memory [5], [4].

TMR, however, is very expensive in terms of area, power,
and timing. At a minimum, full TMR requires 3X as many
resources as an unmitigated design. The need for voters and
other mitigation logic may increase the size of the circuit even
greater than 3X [6]. To address this, some have proposed
the use of partial TMR or other less costly mitigation tech-
niques [7].

In some systems, full mitigation of SEUs may not be neces-
sary. Instead, some systems are more interested in detecting
upsets and using other system-level mechanisms for address-
ing the faults. In response to a detected upset, the system
may take appropriate action such as repairing the configura-
tion bitstream, discarding data, and/or resetting the FPGA.
For example, an FPGA circuit may perform a series of com-
plex arithmetic functions on a stream of data. If a fault has
been detected, the computation can be stopped and performed
again once the fault has been repaired. Systems like this tol-
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erate output errors as long as they are recognized quickly [8].

This paper leverages a well-known technique called dupli-
cation with compare (DWC) for detecting upsets within an
FPGA. As the name implies, this technique operates by du-
plicating circuit resources and comparing the results. This
technique has been shown to detect upsets within the config-
uration memory and user flip flops quickly and accurately.
The ability to quickly and accurately detect these faults was
demonstrated through fault injection experiments as well as
radiation testing.

This paper will begin by reviewing DWC and describing how
it is used within FPGA circuits. Next, this paper will describe
how a circuit can be augmented to perform DWC and dis-
cuss a number of implementation options. The fault injection
architecture will be described along with the results from a
number of designs that exploit DWC. The results from radi-
ation experiments will also be described and compared with
the fault injection results.

2. DUPLICATION WITH COMPARE (DWC)
Many digital systems employ error detection techniques to
improve system reliability. Error detection strategies are used
to detect events that need correction or repair. Many differ-
ent error detection techniques have been demonstrated. Ex-
ample error detection techniques include information coding
techniques such as parity, temporal redundancy (i.e. perform-
ing the same computation twice), and hardware redundancy.
These techniques have been used in virtually all aspects of
computing architectures.

The most common way of detecting SEU induced errors
within an FPGA is through readback. Readback is the pro-
cess of reading the configuration memory within the device.
To detect errors, this memory is compared against a golden
configuration memory that is stored in an external memory. If
there is a difference in the configuration memory, then an er-
ror has been detected and corrective measures such as recon-
figuration can be taken. While effective at detecting errors,
this method of error detection has a number of drawbacks.
First, it is unable to detect errors that occur in dynamic user-
defined memories (i.e. flip-flops or RAMs); only errors in
the configuration bitstream are corrected. Second, there is a
delay from the time an upset occurs to the time when it is
detected by readback with comparison. The worst case de-
lay is the time it takes for a full readback cycle to occur [9]
(this can be over hundreds of milliseconds). Third, systems
that implement readback with comparison require additional
external circuitry that is generally implemented in dedicated
hardware.

This work leverages a well-known error detection technique
called duplication with compare (DWC) as an alternative er-
ror detection technique for FPGAs. DWC is a simple hard-
ware redundancy to detect errors in the circuit. Specifically,
DWC uses two identical copies of a circuit and compares the

outputs of these circuit copies to determine if an upset has
occurred. The comparator circuit detects differences in the
operation of the two circuits and signals the system with an
error flag.

DWC was chosen as an error detection technique for several
reasons. First, it is relatively easy to apply to any circuit. Au-
tomated design tools can be created for adding this technique
to a given circuit. Second, it can be used to detect a vari-
ety of errors including configuration upsets (within the sensi-
tive cross section of the device), transient errors, and upsets
within user flip-flops. Third, it can detect errors immediately
and allow the system to quickly respond to circuit problems.
Fourth, it requires limited external hardware support.

3. IMPLEMENTING DUPLICATION WITH
COMPARE

Implementing DWC within a circuit is relatively straightfor-
ward. To begin, the circuit is duplicated to create two iden-
tical designs (called domains). Circuit duplication is accom-
plished by duplicating each primitive instance in the original
design. Signal nets are also duplicated and the original con-
nectivity of the design is copied in the second circuit domain.
In the simplest form of DWC, the entire circuit is duplicated
(i.e. full duplication).

While full duplication provides the greatest coverage for error
detection, it is also possible to apply partial duplication to a
design. Partial duplication may be necessary for two different
reasons. First, partial duplication may be necessary in cases
where the target FPGA design does not have sufficient re-
sources to accommodate full duplication. For example, there
may be insufficient I/O resources or block memories within
the device to permit full duplication. Second, different logic
regions within a design may be more important than others
and partial duplication can be used to detect errors in regions
of interest rather than within the entire design. For example,
detection circuitry may be needed in the feedback or persis-
tent [7] sections of a design rather than throughout the entire
design.

In addition to circuit duplication, DWC requires the insertion
of comparators and a method of combining comparator sig-
nals for the external system. The rest of this section will sum-
marize these issues and the trade-offs associated with gener-
ating error detection signals.

Selecting Locations for Comparator Insertion

The second step in applying DWC is to select net locations
where the comparators will be inserted. Ideally, compara-
tors are applied to each net of the circuit. However, adding
comparators to all nets is very costly and not possible due
to architectural constraints imposed by the FPGA. Instead, a
sub-set of circuit nets must be selected for comparison.

A common way of inserting comparators is to place them at
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the final outputs of the circuit. Any discrepancies between
the two circuits that are seen at the outputs are detected when
they occur. A disadvantage of this technique is that errors
are not detected until they propagate to the circuit outputs. It
may take a long time for an error within the middle of a circuit
to manifest itself on the outputs. Placing more comparators
throughout the design decreases mean time to detection.

One way of identifying errors more quickly is to insert the
comparators within the feedback portions of the circuit. Er-
rors that occur in the feedback of a design, called persistent
errors [7], pose two problems to the system: persistent errors
can take more time to manifest themselves and it is more dif-
ficult to recover from persistent errors. Placing comparators
within the feedback portion of a design allows instantaneous
detection of persistent faults [10]. This work will investigate
two techniques for comparator insertion: insertion at the cir-
cuit outputs and insertion within feedback portions of the cir-
cuit as well as at the outputs.

Dual Rail Comparator

The purpose of the comparators is to check for differences in
the two domains of a duplicated circuit. A simple comparator
can be constructed using an exclusive or (XOR) gate. When
the input signals to an XOR gate do not match, the gate gen-
erates a logic ’1’. This gate can be used to generate the local
error detection flag for two signals.

While this simple XOR gate can perform error detection, it
is susceptible to failure. To protect against this, a totally
self-checking comparator is used [11], [12]. A totally self-
checking comparator uses dual rails (i.e. two outputs) to indi-
cate an error as seen in Figure 1. Totally self-checking com-
parators generate invalid error codes if a fault has occurred
within the comparator circuitry. The dual-rail comparator ar-
chitecture is a self-checking checker that is simple to imple-
ment.

Figure 1. Dual rail checker

When the dual-rail comparator code is “00”, the circuit being
checked and the comparator circuit are error free. A code-
word of “11” indicates that the input circuit is in error. Error
codes “01” and “10” indicate that there is an error within the
checker systems.

Merging Local Intermediate Error Flags

The final step in implementing DWC is to merge all of the lo-
cal intermediate error flags from each comparator into a sin-
gle error code output. If the design contains hundreds of lo-
cal error flags (i.e. if many comparators were added) then a
large reduction network is needed to reduce the error flags to
a single output. A variety of merging techniques can be used
including binary tree and daisy-chain reduction.

4. MEASURING DETECTION COVERAGE

While the DWC technique is fairly straightforward to imple-
ment, it is not clear how effective it is in detecting SEUs
within an FPGA. An important goal of this work is to iden-
tify the effectiveness of this technique using fault injection.
A hardware fault injection simulator was used to evaluate the
effectiveness of the technique on the test designs in the pres-
ence of SEUs. This section will describe the fault injection
architecture followed by a discussion of the error detection
occurrences that can happen with the architecture.

Fault Injection Architecture

A fault injection simulator was created for this work to mea-
sure the error detection coverage of DWC. Fault injection en-
ables the full exploration of the effectiveness of an error de-
tection scheme for an FPGA-based design. This fault injec-
tion simulator is based on a simulator [13] that was originally
designed at BYU to measure the sensitivity of bits to SEUs in
FPGA-based systems. It was adapted to additionally report
error detection events in designs augmented with the DWC
technique. The simulator is based on the SLAAC-1V FPGA
computing board [14].

As seen in Figure 2, the board consists of three Xilinx Virtex
XCV1000 chips. The X2 chip contains the “golden” version
of the design. X1 is the design under test (DUT) which is
corrupted and tested. X0 contains the control logic that runs
the system and checks the results of each test. The system
is run and controlled through a PCI interface that allows the
user to track the results.

Two major modifications were made to the original sensitivity
simulator for this work. First, support for duplicated outputs
on the DUT was added. This allows the outputs of both cir-
cuit domains to be tested in the X0 control circuit. Second,
the internally generated detection error flags were added and
routed to X0. These features are shown in Figure 2.

Within a simulation run, all configuration bits of the FPGA
except the BRAM content bits are tested using the Se-
lectMAP interface. This is a total of 5, 810, 024 bits for the
XCV1000 FPGA. The basic operation of a fault injection cy-
cle is as follows:

1. Corrupt a configuration bit in X1,
2. Run the system with a set of random inputs for a set
amount of time,
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Figure 2. Modified simulator hardware

3. Check outputs for errors in X0,
4. Check error detection flags in X0, and
5. Repair configuration bit.

This cycle is repeated for all the configuration bits that are to
be tested. The occurrence of actual output errors is compared
with the status of the error detection flags. The software sim-
ulator is able to query the X0 device between each cycle to
determine this information for each bit tested. The results for
each bit are logged and collected to determine error detection
coverage.

Error Detection Occurrences

This fault injection simulator generates a number of distinct
error events that are used to classify the behavior caused by
each upset configuration bit. Each configuration bit can be
classified into four possible outcomes. The possible out-
comes are

• correct operation,
• an output error occurred (EO),
• a functional logic error was detected (EF),
• a detector circuit error was detected (ED).

The EO indicates that the system output is in error. The EF
indicates that the error flag from the DUT is signaling that
the functional logic has been upset. The ED indicates that the
error flag is signaling that an upset has occurred in the error
detection circuitry.

The output error (EO) occurrence is detected by comparing
the duplicated outputs of the DUT with the output of the
“golden” design. Each set of outputs is compared indepen-
dently against the output of the “golden” design. If either of
the outputs is incorrect, an output error occurrence (EO) is
recorded. In equation form it is

EO = (DUT OUT0 6= GOLD or DUT OUT1 6= GOLD).
(1)

The functional logic error (EF) occurrence and the detector
circuit error (ED) occurrence are detected by checking the er-
ror flags generated in the DUT. The error flag signal is routed
to X0 where the checking of the signal and classification of
occurrence is done.

Table 1. Assignment of the occurrence with a 2-bit error
code

Error Code Type of Occurrence
“00” none
“01” ED
“10” ED
“11” EF

The error flag is a 2-bit error code signal because of the use
of a dual-rail comparator architecture. The 2-bit signal orig-
inates in the detection circuitry of the DUT and indicates the
position where the error was detected. Using a 2-bit signal
can result in either an EF if the error was detected in the func-
tional logic of the circuit or an ED indicating the error was
detected in the detection circuitry of the system. Only with
a 2-bit signal can the system indicate where the error is de-
tected. The assignment of EF and ED with a 2-bit error code
is as shown in Table 1. Table 2 summarizes the occurrences
and the reason that each would be recorded.

Table 2. List of reasons for each possibly noted occurrence

Occurrence Reason
EO A difference in the output(s) of the DUT

and GOLD was detected by X0
ED The internal detection circuitry of the

DUT has indicated an error was detected
in the detection circuitry

EF The internal detection circuitry of the
DUT has indicated an error was detected
in the functional circuitry

5. CATEGORIZING ERROR DETECTION
EVENTS

To understand the coverage of an error detection technique
it is necessary to understand the set of error detection events
that can occur. This section will present five categories of
events that can occur when a configuration bit has been up-
set. The five categories are insignificant, sensitive detected,
sensitive undetected, false positive, and checker errors. The
specific combination of error detection occurrences (see Ta-
ble 2) that happen for each upset bit determines the error de-
tection event category assigned to that bit. The five event cat-
egories will be used throughout the remainder of this paper to
quantify the coverage of the DWC error detection technique.

The first type of event that can be caused by the upset of a
configuration bit is an insignificant event (IE). Upset config-
uration bits that cause insignificant events do not cause an
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output error and are termed insignificant bits (IB). Insignifi-
cant events occur when the upset does not affect the system
outputs or the error code. They are represented using the oc-
currence variables EO, EF, and ED (see Table 2) by the logic
formula,

insignificant event(IE) = EO · EF · ED. (2)

Insignificant events indicate that the configuration bit has no
noticeable effect on the system. Most IE are caused by con-
figuration bits in unused portions of the chip. All other events
that occur are significant events and are caused by the upset
of significant bits (SB).

The second type of event is the sensitive detected event. A
sensitive detected event occurs when an upset configuration
bit causes the output to be incorrect and the error detection
circuitry to indicate that an error has been detected in the
functional logic. The configuration bit is then termed a sen-
sitive detected bit (SD). In equation form the event is shown
as,

sensitive detected event(SD) = EO · EF. (3)

Sensitive detected events indicate that the output is not valid
and an error was correctly detected.

The third type of event is the sensitive undetected event. A
sensitive undetected event is caused by a configuration bit that
when upset causes the outputs to be incorrect while the error
detection system continues to indicate proper operation. This
configuration bit is termed a sensitive undetected bit (SU).
Sensitive undetected events can be shown by the equation,

sensitive undetected event(SU) = EO · EF. (4)

Sensitive undetected events occur when the detection cir-
cuitry does not correctly detect an error.

The fourth type of event is the false positive event. A false
positive event occurs when an upset causes the error detection
system to indicate that an error has occurred in the functional
circuit while the output maintains the correct value. The con-
figuration bit that causes a false positive event is termed a
false positive bit (FP). False positive events are given by the
equation,

false positive event(FP ) = EO · EF. (5)

False positives falsely indicate that the outputs are incorrect.

The final type of event is a checker error event. Checker error
events occur when a system is using a 2-bit error code and
an upset causes exactly one of the error code bits to go high
when no output error has occurred. These events are caused
by configuration bits in the detection circuitry that are termed
checker error bits (CE). This event is represented by the equa-
tion,

checker error event(CE) = EO · ED. (6)

Checker errors indicate that the detection circuitry needs to
be corrected but the regular circuitry is functioning properly.
The system outputs are valid and can be trusted.

Table 3. Summary of events and their formulas

Event Logic Formula
Insignificant insignificant = EO · EF · ED
Sensitive Detected SD = EO · EF

Sensitive Undetected SU = EO · EF

False Positive FP = EO · EF

Checker Error CE = EO · ED

The quantity of configuration bits that cause the events de-
fined here can be used to quantitatively determine the cover-
age of an error detection scheme. These events, summarized
in Table 3, will be used to calculate metrics that measure the
effectiveness of error detecting schemes.

Metrics to Determine Error Detection Effectiveness

Two metrics will be used to demonstrate the effectiveness of
DWC as an error detection technique. They are the percent-
age of correctly diagnosed significant bits (CDSB) and the
percentage of correctly diagnosed configuration bits (CDCB).

The first metric, CDSB, is the percentage of significant bits
(SB) that are correctly diagnosed by the error detection cir-
cuitry. The reader will recall that only sensitive undetected
(SU) events are incorrectly diagnosed. Thus the fraction of
correctly diagnosed significant bits is simply the total num-
ber of significant bit events minus sensitive undetected events
divided by the total number of significant bit events. In equa-
tion form CDSB is

CDSB(%) =
SB − SU

SB
∗ 100.

where,

SB = SU + SD + CE + FP

(7)

In other words, this metric measures the fraction of bits that
do not cause SUs in terms of all the bits that cause variations
in the system behavior (i.e. significant bits), whether the vari-
ation is in the error detection circuitry or the regular logic.
This metric is beneficial because it is device independent in
that it does not depend on the total number of configuration
bits in a device. In other words, CDSB can be used to measure
the effectiveness of a detection technique on a given design
independent of the size of the device.

The second metric, CDCB, is the percentage of all configura-
tion bits (significant bits + insignificant bits) that are correctly
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diagnosed by the error detection circuitry. Unlike CDSB this
metric is device dependent because it includes insignificant
bits (IB) which are equally likely to experience SEUs. In
other words, since all bits are included, CDCB shows the
percentage of errors correctly diagnosed by the error detec-
tion circuitry from the device’s perspective. Since insignifi-
cant bits are also correctly diagnosed by the error detection
circuitry, the equation to calculate CDCB is quite similar to
Equation 7 for CDSB. It is simply the total number of bits
(TB) minus sensitive undetected bits, divided by the total
number of bits. In equation form this is

CDCB(%) =
TB − SU

TB
∗ 100.

where,

TB = total device configuration bits

= SB + IB

(8)

CDCB is useful because it can be used to calculate the mean
time to an incorrectly diagnosed event, or mean time to failure
(MTTF). MTTF can be calculated with the equation

MTTF =
1

SEU Rate× (1− CDCB)
. (9)

Both CDSB and CDCB can be used to show the effectiveness
of error detection techniques. These metrics will be used in
conjunction with the defined events to analyze the effective-
ness of DWC as an error detection technique.

6. FAULT INJECTION RESULTS

Test Designs

A suite of benchmarks was created to demonstrate the effec-
tiveness of the error detection methodology presented in this
paper. These designs were chosen because they represent a
wide array of functionality, implementation, and sizes.

The counters200 design is a useful test case because it has
significant amounts of feedback and state. The design is a
synthetic design composed of 200 loadable 8-bit counters
chained together. The output of the design is a 16-bit par-
ity check of the counters. Each counter generates a parity
bit. The 200 parity bits are XOR-ed together to form a 16-bit
value that is tied to the system outputs.

The synthetic design contains moderate amounts of state and
significant portions of feed-forward logic. The design con-
sists of several LFSRs whose outputs are combined together
by an adder tree. This output is multiplied with the 16-bit
input value. The top 16 bits of this output are added to the
bottom 16 bits to form a sum that is tied to the outputs of the
system.

The quadrature phase-shift keying (QPSK) demodulator im-
plements a real-world communication algorithm. QPSK is a
digital modulation that encodes data using the phase of the
carrier signal. QPSK is often used in the communication
world. This design is a good representation of a real world
design with significant computations and large amounts of
feedback.

A triple DES encrypter was chosen to represent a real world
computationally intensive system. Triple DES is a block
cypher formed by applying the standard DES encryption
scheme three times to a data packet. This design was cho-
sen for use in this work for two reasons. The first reason is
that it represents real world computationally intensive feed-
forward designs. The second reason is the size of the design.
In its original form 46% of the chip was used. Once DWC
was applied, 99% of the chip resources were used up. This
design is difficult to place and route since the whole chip is
used. This design shows how well DWC can work in the face
of resource constraints.

A DSP Kernel was chosen to represent a real world digital
signal processing circuit and to test the effectiveness of partial
DWC. This particular design is interesting because the target
chip for our tests (XCV1000) does not have enough block ram
resources to allow full duplication of the design. The block
rams were left unduplicated while applying DWC to the rest
of the design in order to evaluate partial DWC coverage.

A modified version of the synthetic design was also used. It
is similar to the first version but includes more logic to use
up the resources of the chip more fully. This was done to
facilitate radiation test validation of the fault injection results.

This suite represents a wide array of designs ranging from
high-feedback designs to feed-forward only designs and from
synthetic to real world designs. They will be used throughout
this section to generate results.

All of these designs were tested with the dual-rail comparator
architecture. The first four designs were tested with com-
parators placed only at the outputs, and the clock and reset
lines were left unduplicated. The DSP Kernel and the mod-
ified synthetic design were tested with comparators placed
not only at the outputs but also at feedback locations spread
throughout the designs in order to facilitate a quick error de-
tection time. Also, the clock and reset lines in these last two
designs were duplicated to provide better error detection cov-
erage.

Results

Table 4 shows the results that were obtained from the suite of
benchmark designs. The percentages are given for each error
detection event in terms of a percentage of the total signifi-
cant bits (SB). This section will briefly consider the causes
of events in each category. A more detailed explanation of
their causes can be found in the thesis Using Duplication
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Table 4. Results from simulator

Design Slices Significant SUs SDs FPs CEs
Bits (%) (%) (%) (%)

Counters200 2, 171 273, 196 696 271, 542 188 770
(0.25%) (99.39%) (0.07%) (0.28%)

Synthetic 9, 343 587, 200 1, 603 584, 191 113 1, 293
(0.27%) (99.49%) (0.02%) (0.22%)

QPSK 2, 248 182, 754 1, 236 180, 467 208 763
Demodulator (0.68%) (98.75%) (0.12%) (0.42%)
Triple 12, 286 1, 368, 386 3, 087 1, 363, 041 432 1, 826
DES (0.23%) (99.61%) (0.03%) (0.13%)
DSP 12, 286 1,631,780 34,996 1,122,363 415,934 58,487
Kernela (2.15%) (68.78%) (25.49%) (3.58%)
Modified 12, 286 1,098,322 2669 1,077,504 5,095 13,054
Synthetic (0.24%) (98.11%) (0.46%) (1.19%)

aThe excessive false positives and checker errors in the DSP Kernel are artifacts of partial duplication

with Compare for On-line Error Detection in FPGA-based
Designs [9].

Sensitive Detected Errors—The sensitive detected errors are
caused by upsets in the configuration memory that affect the
routing or logic of only one of the duplicated domains. The
comparator circuitry detects these errors and signals that an
error has been detected with the appropriate error code out-
put.

The number of SD bits is primarily determined by the size,
placement, and routing of the system. These type of bits are
correctly diagnosed by the detection circuitry. Any effects
caused by these bits are correctly reported to the external sys-
tem.

Sensitive Undetected Errors—Sensitive undetected errors oc-
cur when an error causes the outputs of the system to be in-
correct but the error detection circuit fails to detect this error.
These errors are undesirable as it indicates that the error de-
tection approach is not working. This type of error is caused
by an SEU in a portion of the design that does not get com-
pared by the comparator circuitry (i.e. upsets in unduplicated
circuitry).

There are several reasons why some circuitry will not be du-
plicated. First, there may not be enough I/O resources to
duplicate the inputs or outputs. Upsets within unduplicated
inputs will cause failures in both copies of the duplicated cir-
cuit as the inputs drive both circuits. Upsets within undupli-
cated outputs will also cause a problem because the internal
comparators are placed before the single outputs. Second,
it may not be possible to duplicate global resources such as
clocks and resets. Upsets in these global resources will neg-
atively affect both copies of the circuit. Third, there may not
be enough resources to fully duplicate all logic. In this case,
upsets within unduplicated logic are not detectable.

The presence of sensitive undetected events in Table 4 is due
to the lack of full circuit duplication. First, the inputs for all
designs are unduplicated. Further, the clock and resets are
not duplicated for all designs except the DSP kernel and the
modified synthetic design. The relatively high presence of
sensitive undetected events in the DSP kernel is due to the
fact that the BRAMs in the design are not duplicated.

False Positives—False positives occur when an error affects
both domains of the comparator circuitry, causing both to out-
put a positive error signal. These events occur when upsets
occur in the routing to the comparator circuitry [9]. False
positives can also occur when output errors are masked inter-
nally before leaving the device.

False positives indicate that the output is in error when in fact
it is not. False positives are not detrimental to the system.
They are, however, misleading and may result in unnecessary
repair. Reducing false positives is a secondary goal of error
detection schemes. Routing to the comparators and the num-
ber of comparators are the key determinants of false positives.

Checker Errors—Checker errors occur when SEUs affect the
comparator circuitry or the circuitry that merges the multiple
local error flags into a final error code output. Checker errors,
like false positives, are determined by the routing and number
of comparators. Checker errors do not pose a problem for
error detection schemes and do not need to be reduced.

Effectiveness Metrics for Benchmark Designs

The CDSB (see Equation 7) and CDCB (see Equation 8) ef-
fectiveness metrics were calculated from the fault injection
results to measure the effectiveness of DWC as applied to the
designs in the benchmark suite. They are shown in Table 5.

From these results, it is shown that when full design dupli-
cation is used, DWC has an estimated 99.95% to 99.99%
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Table 5. Effectiveness calculations of the benchmark
designs

Design CDCB CDSB
Counters200 99.99% 99.75%
Synthetic 99.97% 99.73%
QPSK 99.98% 99.32%
Triple 99.95% 99.77%
DSP Kernel* 99.40% 97.86%
Modified Synthetic 99.95% 99.76%
Average 99.87% 99.37%

probability of correctly diagnosing a configuration bit and a
99.32% to 99.77% probability of correctly diagnosing a sig-
nificant bit. These numbers are based on the results obtained
in this work and shown here.

In some cases, it is not possible to fully duplicate the design
(i.e. due to insufficient resources). The DSP kernel uses a par-
tial duplication strategy due to a limitation in the number of
Block RAMs within the device. As expected, the test results
from the DSP kernel show higher rates for sensitive unde-
tected (SU) events. Because part of the design does not have
detection, sensitive upsets will occur that are not detected by
the detection circuitry.

The DSP kernel also showed a higher number of FP and CE
events. The increase in these events is also due to partial du-
plication but the reason is not as clear. In a partially dupli-
cated system, there are often places in the circuit when two
copies of the logic (i.e. duplicated logic) feed into a single
copy of the logic (i.e. unduplicated). As seen in Figure 3,
the output from only one of these two copies can be fed for-
ward, so one of the two copies is essentially a “dead branch”
that does not affect the behavior of the single, unduplicated
logic. The dead branches do, however, affect the outputs of
the error detection circuitry because error checkers are placed
at the end of the dead branch. Upsets in the dead branches are
detected but do not result in erroneous circuit output (i.e. they
result in FP and CE events).

Figure 3. Dead Branch Example

When using partial duplication in a deployed system, the in-
creased presence of false positives and checker errors should
be considered. It should be expected that not all of the
events reported by the detection circuitry as errors will actu-
ally cause output errors. Further, lower effectiveness of error
detection should be expected. Although there are limitations
associated with partial duplication, both full and partial DWC
have been shown to provide very high fault coverage for those
areas of the circuit that are duplicated and compared.

7. RADIATION EXPERIMENTS

Radiation effects tests were performed at the Crocker Nuclear
Laboratory proton accelerator facility using two of the de-
signs from the benchmark set: the DSP Kernel and the mod-
ified synthetic design. The purpose of the tests was to vali-
date the results obtained through the fault injection simulator.
This section will summarize the test architecture, explain the
classification of error detection events in the accelerator test
environment, present the results of the experiments, and show
that they correlate with the previously presented fault injec-
tion results.

Radiation Test Architecture

Like the fault injection simulator, the radiation test architec-
ture is based on the SLAAC-1V FPGA computing board. The
hardware setup is identical to the fault injection simulator
except that a configuration controller is added to constantly
scrub and report SEUs that occur in the configuration bit-
stream of the DUT via the SelectMAP interface. The hard-
ware setup is shown is Figure 4.

Figure 4. Radiation Test Setup

The software for the radiation test setup is different from the
fault injection simulator software. Instead of injecting faults
in the configuration bitstream and observing their effects, the
radiation test software waits for error detection events to hap-
pen. As the DUT FPGA is irradiated, SEUs that occur in
the configuration bitstream cause error detection events that
the software detects and logs. Concurrently, the configura-
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tion controller continuously logs and repairs the SEUs in the
DUT.

The radiation source was a 63.5 MeV proton beam. Over
the course of the test, the DUT received a total fluence of
3.14× 1011 p/cm2 and a total dose of 42.2 krad.

Event Classification

Error detection events are classified in the radiation test soft-
ware much the same way as they are in the fault injection
software. The radiation test software knows that an error de-
tection event has occurred when the occurrence of at least one
of the three error detection occurrences that are listed in Table
2 (EO, EF, ED) is reported to the X0 FPGA through the PCI
interface. The software then waits a sufficient amount of time
for all error detection occurrences associated with the cur-
rent SEU to happen. Then, it queries the X0 FPGA through
the PCI interface to find out which occurrences actually hap-
pened. Finally, event categorization takes place according to
the flow chart in Figure 5.

Figure 5. Flow chart for software error detection event cate-
gorization

Results

The results of the radiation test for the DSP Kernel and the
modified synthetic design are shown in Table 7. The percent-
ages are given for each error detection event in terms of a
percentage of the total significant bits tested. The CDSB ef-
fectiveness metric calculations for these results are shown in
Table 6 and compared to the previously presented fault in-
jection CDSB calculations. This comparison shows that the
radiation test results closely match the fault injection simula-
tion results.

Table 6. Radiation Test Effectiveness Metric Calculations

Radiation Fault
Design Test Injection

CDSB CDSB
DSP Kernel* 98.02% 97.86%
Modified Synthetic 99.85% 99.76%

8. CONCLUSION

In this paper, the DWC error detection method is shown to be
an effective way of detecting errors in FPGA-based systems.
The simplicity of the DWC technique allows it to be applied
with an automated CAD tool. Radiation test results show that
the DWC technique can detect approximately 99.85% of all
circuit errors. This very good coverage is achieved at the cost
of an approximate 2× increase in design size. These factors
make the DWC technique a viable error detection method for
systems that can tolerate known temporary deviations from
normal operation.

There is potential for much future work building on this study.
One major area of concern is the reporting of persistent errors
that occur in design feedback paths. Persistent errors can-
not be corrected in the same manner as non-persistent errors.
Generally, a full system reset is required to recover from a
persistent error. Because of this, future modifications of the
automated tool for applying DWC could provide the option
of separating the error detecting lines into non-persistent and
persistent error signals.

Another interesting application of DWC would be to try a hy-
brid TMR/DWC approach to protecting a design from SEUs.
The persistent cross-section of the design could be augmented
with TMR and the rest of the design could be protected with
DWC to provide elimination of persistent errors and detection
of non-persistent errors.

The DWC technique could also be combined with TMR in
a different manner to provide full error mitigation as well
as error detection. Currently, TMR must be used in com-
bination with periodic scrubbing in order to prevent upsets
from accumulating in the configuration bitstream. TMR by
itself masks output errors but does not report their occurrence.
Augmenting a design with both TMR and DWC would pro-
vide both error correction and detection. Such a system could
use interrupt-driven scrubbing rather than periodic scrubbing.
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