
MAPLD 2009

August 31 - September 3, 2009

SPFFI: Simple, PortableSPFFI: Simple, Portable

FPGA Fault InjectorFPGA Fault Injector

Grzegorz Cieslewski
Ph.D. Student

NSF CHREC Center, University of Florida

Dr. Alan D. George
Professor of ECE

NSF CHREC Center, University of Florida

2

OutlineOutline

� Goals and Motivations

� Existing FPGA Fault-Injection Technology
� SPFFI Architecture and Capabilities

� Methodology of Fault Injection
� Fault Injection and Statistics

� Case Studies
� MicroBlaze – System-Level Testing
� LIDAR – Module-Level Testing

� Conclusions and Future Work

3

Goals and MotivationsGoals and Motivations
� Goals – Explore methodologies and procedures for

effectively combining fault-testing methods and concepts
� Verification of fault-tolerant FPGA architectures and

designs for space and terrestrial applications
� Portable solution that can be used on COTS

as well as specialized FPGA platforms

� Motivations – FT testing of large
FPGA-based designs can be very difficult
� Why wait for fault testing until completion of system?
� Beam testing is very expensive and lacks coverage
� Developers need to be able to perform testing

without specialized hardware to estimate reliability
� Enabling technology for further research

� Challenges – Tool limitations and
shortcomings of FPGA architecture
� Restricted access to dynamic

components (BRAM)
� Slow programming interconnect

D
e
v
e
lo

p
m

e
n

t
T

im
e

4

Existing FPGA FaultExisting FPGA Fault--Injection Tech.Injection Tech.

� Custom hardware solutions
� XRTC fault-injection board
� High injection speed and excellent coverage
� Limited portability and difficult in-system testing

� Beam testing
� Most accurately resembles space conditions
� Very costly

� High time and financial overhead

� Few facilities which provide the service
� Limited experiment repeatability

� Manual injection
� Requires designer to manually insert faults in HDL

� Can interfere with design at hand
� Difficult to implement

� Cannot accurately emulate types of faults
expected

5

SPFFI SPFFI –– Simple Portable FPGA Fault InjectorSimple Portable FPGA Fault Injector

� Introduction
� New fault-injection utility designed for

easy and portable use
� Supports multiple Virtex-4 FPGA

platforms with Virtex-5 and -6 support
coming in near future

� System Model
� PC connected to FPGA-based sys.

� Prog. Interface: JTAG (most popular)
� Test interface: USB, PCI, Serial, …

� SPFFI consists of 3 major components
� SPFFI Engine

� Responsible for fault injection and result
collection

� Campaign Generator
� Crafts injection campaigns based on

parameters specified by user

� Test Generator
� Plug-in component for customizable

FPGA testing

6

SPFFI ComponentsSPFFI Components
� SPFFI Engine

� Campaign Manager
� Orchestrates execution of campaign as specified

in input file

� Bitstream parser
� Analyses input bitstreams to extract relevant

architectural and design information

� Bitstream generator
� Crafts customized full and partial bitstreams to

allow for fault injection and removal

� JTAG interface engine
� Provides high-level programming interface for

variety of JTAG connections

� Logging Engine
� Stores events and injection results in a database

� Test Generator
� Plug-in application that verifies correct

operation of design
� User-defined for maximum flexibility
� Can be partially hosted on FPGA to speed up

testing

Fault

Injection

Campaign

User

Parameters

Full and

debug

bitstreams

Bitstream

Generator

Bitstream

Parser

JTAG

Interface

Engine

Log

Engine

Campaign

Manager

Test

Generator

Event

Log

Bitstream

Objects

Error

Locations

JTAG

7

SPFFI ComponentsSPFFI Components
� Campaign Generator

� Generates locations at which faults will be injected
by SPFFI Engine
� Parameters: injection count, resource type, transition

type, occupied vs. unoccupied frames, campaign type

� Campaign Types
� Uniform campaign

� Selects random injection locations anywhere on chip

� Automatically targeted campaign
� Based on coarse bitstream analysis; chip is divided into

two mutually exclusive occupied and unoccupied regions
� Two campaigns are performed, one for each region

� Vast majority of observable errors are due to faults
injected into occupied region

� Manually targeted campaign
� Region of interest specified by user

8

Fault Injection MethodologyFault Injection Methodology
� Fault-injection considerations

� Correctness
� Minimize false positives
� Representative of how SEUs and

SEFIs occur
� Performance

� Higher performance will provide
better estimate of error rate

� Test Generator upshots
� No observable error (benign fault)

� Triggers fault removal via partial
reconfiguration

� Injected fault produces error
� FPGA produces invalid or no output
� Data error (comparison with golden

standard fails)
� Triggers return to original state via full

reconfiguration
� Site is re-tested to eliminate bias

introduced by partial reconfigurations

Run Test Generator

Error detected?

Repair via

full reconf.

Repair via

partial reconf.

NO YES

Inject fault via

partial reconf.

Invert specified bit,

craft partial bitstr.

Restore specified bit

via partial reconf.

Test 1 or 2?

Obtain new fault

location

Test 1

Test 2

9

Testing MethodologyTesting Methodology
� System Types

� Module-Level Testing
� Designed to test standalone modules

of a system
� Data is provided and collected from module

by a wrapper design residing on same chip
� Test data can be provided by Test

Generator or can reside on FPGA to
increase testing speed.

� System-Level Testing
� Used for testing of systems which interact

with external hardware
� System-on-chip type scenarios
� System with FPGA co-processor

� Test Generator is used to issue commands
for starting and stopping testing

� Hybrid Testing
� Combination of above approaches
� Used for integration & incremental testing

Module Under

Test

Wrapper and

control logic

System Board
SPFFI

Engine Other

Comp.

Test

Generator

Other

Comp.

Other

Comp.

Other

Comp.

Full System

Design

System Board
SPFFI

Engine Other

Comp.

Test

Generator

Other

Comp.

Other

Comp.

Other

Comp.

Test

Interface

Test

Interface

Module-Level Testing

System-Level Testing

FPGA

FPGA

JTAG

JTAG

10

SPFFI PerformanceSPFFI Performance
� JTAG performance

� Strongly dependent upon JTAG Engine
backend
� Up to 2 injections/s when using iMPACT
� Up to 12 injections/s when using UrJTAG
� Based on Virtex-4 LX25

� Different backends possible
� Limited by poor performance of JTAG

cables and software overhead
� Test Generator performance

� Generating representative set of test
vectors is difficult
� Representative set might be very large and

require long testing times.
� Varies depending on implementation

� Physical location of test vectors

� Error rate
� Less than 10% for most of designs
� Injection speed generally increases for

designs with lower error rates
� Fewer full reconfigurations to restore

known state

Programming Type iMPACT UrJTAG

Full Configuration ~4.0 8.8

Partial Reconfiguration 0.4 0.043

Speedup and Configuration Time
vs. Error Rate

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Error Rate [%]

S
pe

ed
up

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
vg

. C
on

f.
T

im
e

[s
]

Speedup

UrJTAG

iMPACT

11

Fault Injection and StatisticsFault Injection and Statistics
� Designing fault injection experiments with statistic in mind

� Coverage of sensitivity testing
� Full testing vs. partial testing

� Select a representative bits in region of interest
� Random sampling
� Stratified sampling

� Interpretation of results
� Are results obtained representative of whole design?

� Confidence intervals
� Interval which contains true value of parameter with certain probability
� Point estimate of parameter

� Does not quantify the quality or range of data collected

� Fault-injection testing can be viewed as series
of independent Bernoulli trials
� Two possible outcomes

� Success – no observable error
� Failure – injection causes observable error

γεθε =−Θ<<−Θ)(21P

12

Calculation of Confidence IntervalCalculation of Confidence Interval

� Chebyshev’s inequality
� One of simplest ways to obtain a confidence interval
� Used when variance of estimator (theta) is known or can be easily

estimated
� Prior knowledge of distribution type is not required
� Quality of bounds can be improved if underlying distribution is known

� Binominal estimation of confidence interval for error rate
� In case of FI we know underlying distribution

� Sum of multiple Bernoulli trials is
binomially distributed

� More difficult to calculate as no closed
form solution exists

� Yields bounds which are much tighter than
using Chebyshev’s inequality

� Using similar approach, it is possible to calculate number of trials
required to obtain certain confidence interval

10

1

0

2

1
),:1(1

2

1
),:(

kSk

pnkB

pnkB

n ≤≤

−≤−−

−≤

γ

γ

2

]ˆ[
1)ˆˆ(

ε
εθε Θ−≥−Θ<<−Θ Var

P

13

MicroBlaze Case StudyMicroBlaze Case Study
� Soft-core processors are often used as

computational resources on FPGA systems
� What error rate can we expect without FT

mitigation?
� Experiment Setup

� SoC consists of one MicroBlaze with FPU
� Employs system-level testing methodology
� 10,000 experiments performed for each campaign

� Test Generator
� Two popular linear-algebra benchmarks

� Matrix Multiply
� LU Decomposition

� Results
� Occupied Frames

� LU error rate: 4.19%
with 99% CI of [3.67%, 4.72%]

� MM error rate: 4.02%
with 99% CI of [3.51%, 4.54%]

� Unoccupied Frames
� LU error rate: 0.14%

with 99% CI of [0.04%, 0.25%]
� MM error rate: 0.09%

with 99% CI of [0.01%, 0.19%]

MicroBlaze Fault Injection Results

1.63%

2.56%

3.73%

0.00%
0.29%

0.09%0.14%
0.00%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

LU - Occupied
Frames

LU - Empty
Frames

MM -
Occupied
Frames

MM - Empty
Frames

E
rr

or
 R

at
e

Data Error IO Error

14

LIDAR Case StudyLIDAR Case Study
� LIDAR (Light Detection and Ranging)

� Widely used in remote sensing for terrain mapping
� Susceptible to upsets due to hazardous operating

environment
� SCP used as error mitigation technique

� Coordinate Calculation phase constructs 3D information
of targets based on set of LIDAR parameters
� Each laser return is processed independently

� Experimental Setup
� Similar hardware setup to previous

case study
� Employs module-level testing

methodology
� 20000 test vectors per injection trail

� Results (undetected errors)
� No FT error rate: 5.18%

with 99% CI of [4.61%, 5.77%]
� SCP error rate: 0.39%

with 99% CI of [0.23%,0.57%]

LIDAR Parameters
ρ, θ, φr, φp, φy,

Xac, Yac, Zac

Coordinate Calculation (CC)

Sinusoidal
Evaluation

Vector Rotation
& Translation

Target
Coordinate

X, Y, Z

15

Conclusions and Future WorkConclusions and Future Work
� Conclusions

� SPFFI – new and innovative fault-injection system
� Simplifies fault testing
� Does not require specialized hardware
� Fills niche where other methods fall short

� Proposed a methodology for fault-injection testing
� Module- and system-level testing
� Use of combination of partial and full reconfiguration

� Complete testing is not always needed
� Confidence intervals can provide answers which are close enough

for development testing
� Demonstrated multiple case studies exemplifying use of SPFFI

� Future Work
� Support for Virtex-5 and Virtex-6 devices
� Augment BRAM injection capabilities
� Increase fault-injection speed with improved JTAG interface

16

QUESTIONS?

This work was supported in part by the I/UCRC Program of the National Science Foundation under
Grant No. EEC-0642422. We also gratefully acknowledge tools provided by Xilinx.

MAPLD 2009

August 31 - September 3, 2009

Backup Slides: RFT Case StudyBackup Slides: RFT Case Study

18

PRR3PRR2PRR1

RFT Controller

� Motivations for RFT
� Dynamically vary fault-tolerance levels

depending on external stimuli
� Obtain high reliability during critical

moments while maximizing
performance (or minimizing power)
at other times

� Partial Reconfiguration enables
system flexibility
� Ability to move Partial Reconfiguration Modules (PRM)

around to different Partial Reconfiguration Regions (PRR)
� Ability to modify level of fault tolerance in a single PRM
� Ability to add multiple PRMs to increase fault tolerance

through replication
� Possible FT approaches for RFT components

� Coarse-Grained Replication (SCP, TMR)
� Algorithm-Based Fault Tolerance (ABFT)
� Error Correcting Codes (ECC)
� FT-HLL through source-to-source translation

APP1 APP2 APP3

Reconfigurable Fault ToleranceReconfigurable Fault Tolerance

P
LB

 B
us

MicroBlaze

ICAP

Flash
controller

UART

USB

APP1 APP1 APP1

Controller + TMR Voter

19

RFT Case StudyRFT Case Study
� ABFT designs detected >70% of

errors from original design
� Hybrid design had even higher reliability

� ABFT and Hybrid designs approach
reliability of traditional TMR
� However, TMR automatically provides

correction

� ABFT requires additional hardware and
cycles to correct erroneous data

� Two ABFT approaches explored
� Matrix Multiplication (MM)
� Linear Transform (LT)

� Algorithm details in appendix

� Baseline non-FT designs compared
to multiple FT approaches
� ABFT - Original VHDL design with

additional ABFT components

� TMR – Triplicated version of original
� Hybrid – ABFT design with key

components triplicated

� Design reliability tested with SPFFI
� Single-bit errors injected into

configuration memory
� Focus on LUT and routing resources

� Errors recorded and categorized for
later analysis

Overhead
(Slice / BRAM / Cycles)

Undetected
Errors (%)

MM – Original --- 5.75%

MM – ABFT 184% / 0% / 40% 0.76%

MM – Hybrid 196% / 0% / 40% 0.47%

MM – TMR 242% / 200% / 0% 0.66%

LT – Original --- 3.05%

LT – ABFT 149% / 100% / 5% 0.88%

LT – Hybrid 215% / 100% / 5% 0.53%

LT – TMR 284% / 200% / 0% 0.35%

LT – TMR created using
BYU’s EDIF-based TMR tool

MM – TMR created using
VHDL-level replication

