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Goals and MotivationsGoals and Motivations
� Goals – Explore methodologies and procedures for 

effectively combining fault-testing methods and concepts
� Verification of fault-tolerant FPGA architectures and 

designs for space and terrestrial applications
� Portable solution that can be used on COTS

as well as specialized FPGA platforms

� Motivations – FT testing of large 
FPGA-based designs can be very difficult
� Why wait for fault testing until completion of system?
� Beam testing is very expensive and lacks coverage
� Developers need to be able to perform testing

without specialized hardware to estimate reliability
� Enabling technology for further research

� Challenges – Tool limitations and 
shortcomings of FPGA architecture
� Restricted access to dynamic 

components (BRAM)
� Slow programming interconnect
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Existing FPGA FaultExisting FPGA Fault--Injection Tech.Injection Tech.

� Custom hardware solutions
� XRTC fault-injection board
� High injection speed and excellent coverage
� Limited portability and difficult in-system testing

� Beam testing
� Most accurately resembles space conditions
� Very costly

� High time and financial overhead 

� Few facilities which provide the service
� Limited experiment repeatability

� Manual injection
� Requires designer to manually insert faults in HDL 

� Can interfere with design at hand
� Difficult to implement

� Cannot accurately emulate types of faults 
expected
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SPFFI SPFFI –– Simple Portable FPGA Fault InjectorSimple Portable FPGA Fault Injector

� Introduction
� New fault-injection utility designed for 

easy and portable use
� Supports multiple Virtex-4 FPGA 

platforms with Virtex-5 and -6 support 
coming in near future

� System Model
� PC connected to FPGA-based sys.

� Prog. Interface: JTAG (most popular)
� Test interface: USB, PCI, Serial, …

� SPFFI consists of 3 major components
� SPFFI Engine

� Responsible for fault injection and result  
collection

� Campaign Generator
� Crafts injection campaigns based on 

parameters specified by user 

� Test Generator
� Plug-in component for customizable 

FPGA testing
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SPFFI ComponentsSPFFI Components
� SPFFI Engine

� Campaign Manager
� Orchestrates execution of campaign as specified 

in input file

� Bitstream parser
� Analyses input bitstreams to extract relevant 

architectural and design information

� Bitstream generator
� Crafts customized full and partial bitstreams to 

allow for fault injection and removal

� JTAG interface engine
� Provides high-level programming interface for 

variety of JTAG connections

� Logging Engine
� Stores events and injection results in a database

� Test Generator
� Plug-in application that verifies correct 

operation of design
� User-defined for maximum flexibility
� Can be partially hosted on FPGA to speed up 

testing
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SPFFI ComponentsSPFFI Components
� Campaign Generator

� Generates locations at which faults will be injected 
by SPFFI Engine
� Parameters: injection count, resource type, transition 

type, occupied vs. unoccupied frames, campaign type

� Campaign Types
� Uniform campaign

� Selects random injection locations anywhere on chip

� Automatically targeted campaign
� Based on coarse bitstream analysis; chip is divided into 

two mutually exclusive occupied and unoccupied regions
� Two campaigns are performed, one for each region

� Vast majority of observable errors are due to faults 
injected into occupied region

� Manually targeted campaign
� Region of interest specified by user
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Fault Injection MethodologyFault Injection Methodology
� Fault-injection considerations

� Correctness
� Minimize false positives
� Representative of how SEUs and 

SEFIs occur
� Performance

� Higher performance will provide 
better estimate of error rate

� Test Generator upshots
� No observable error (benign fault)

� Triggers fault removal via partial 
reconfiguration

� Injected fault produces error
� FPGA produces invalid or no output
� Data error (comparison with golden 

standard fails)
� Triggers return to original state via full 

reconfiguration
� Site is re-tested to eliminate bias 

introduced by partial reconfigurations

Run Test Generator

Error detected?

Repair via 

full reconf.

Repair via 

partial reconf.

NO YES

Inject fault via

partial reconf.

Invert specified bit, 

craft partial bitstr.

Restore specified bit 

via partial reconf.

Test 1 or 2?

Obtain new fault 

location

Test 1

Test 2
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Testing MethodologyTesting Methodology
� System Types

� Module-Level Testing
� Designed to test standalone modules

of a system
� Data is provided and collected from module 

by a wrapper design residing on same chip
� Test data can be provided by Test 

Generator or can reside on FPGA to 
increase testing speed.

� System-Level Testing
� Used for testing of systems which interact 

with external hardware
� System-on-chip type scenarios
� System with FPGA co-processor

� Test Generator is used to issue commands 
for starting and stopping testing

� Hybrid Testing
� Combination of above approaches
� Used for integration & incremental testing
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SPFFI PerformanceSPFFI Performance
� JTAG performance

� Strongly dependent upon JTAG Engine 
backend
� Up to 2 injections/s when using iMPACT
� Up to 12 injections/s when using UrJTAG
� Based on Virtex-4 LX25

� Different backends possible 
� Limited by poor performance of JTAG 

cables and software overhead 
� Test Generator performance

� Generating representative set of test 
vectors is difficult
� Representative set might be very large and 

require long testing times.
� Varies depending on implementation

� Physical location of test vectors

� Error rate
� Less than 10% for most of designs
� Injection speed generally increases for 

designs with lower error rates
� Fewer full reconfigurations to restore 

known state

Programming Type iMPACT UrJTAG

Full Configuration ~4.0 8.8

Partial Reconfiguration 0.4 0.043

Speedup and Configuration Time 
vs. Error Rate
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Fault Injection and StatisticsFault Injection and Statistics
� Designing fault injection experiments with statistic in mind

� Coverage of sensitivity testing
� Full testing vs. partial testing

� Select a representative bits in region of interest
� Random sampling
� Stratified sampling

� Interpretation of results
� Are results obtained representative of whole design?

� Confidence intervals
� Interval which contains true value of parameter with certain probability
� Point estimate of parameter

� Does not quantify the quality or range of data collected

� Fault-injection testing can be viewed as series 
of independent Bernoulli trials
� Two possible outcomes

� Success – no observable error
� Failure – injection causes observable error

γεθε =−Θ<<−Θ )( 21P
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Calculation of Confidence IntervalCalculation of Confidence Interval

� Chebyshev’s inequality
� One of simplest ways to obtain a confidence interval
� Used when variance of estimator (theta) is known or can be easily 

estimated
� Prior knowledge of distribution type is not required
� Quality of bounds can be improved if underlying distribution is known

� Binominal estimation of confidence interval for error rate
� In case of FI we know underlying distribution

� Sum of multiple Bernoulli trials is  
binomially distributed 

� More difficult to calculate as no closed 
form solution exists

� Yields bounds which are much tighter than 
using Chebyshev’s inequality

� Using similar approach, it is possible to calculate number of trials 
required to obtain certain confidence interval
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MicroBlaze Case StudyMicroBlaze Case Study
� Soft-core processors are often used as 

computational resources on FPGA systems
� What error rate can we expect without FT 

mitigation?
� Experiment Setup

� SoC consists of one MicroBlaze with FPU
� Employs system-level testing methodology
� 10,000 experiments performed for each campaign 

� Test Generator
� Two popular linear-algebra benchmarks 

� Matrix Multiply
� LU Decomposition

� Results
� Occupied Frames

� LU error rate: 4.19%
with 99% CI of [3.67%, 4.72%]

� MM error rate: 4.02%
with 99% CI of [3.51%, 4.54%]

� Unoccupied Frames
� LU error rate: 0.14%

with 99% CI of [0.04%, 0.25%]
� MM error rate: 0.09%

with 99% CI of [0.01%, 0.19%]

MicroBlaze Fault Injection Results
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LIDAR Case StudyLIDAR Case Study
� LIDAR (Light Detection and Ranging)

� Widely used in remote sensing for terrain mapping
� Susceptible to upsets due to hazardous operating 

environment
� SCP used as error mitigation technique

� Coordinate Calculation phase constructs 3D information 
of targets based on set of LIDAR parameters
� Each laser return is processed independently

� Experimental Setup
� Similar hardware setup to previous 

case study
� Employs module-level testing 

methodology
� 20000 test vectors per injection trail

� Results (undetected errors)
� No FT error rate: 5.18% 

with 99% CI of [4.61%, 5.77%]
� SCP error rate: 0.39% 

with 99% CI of [0.23%,0.57%]

LIDAR Parameters
ρ, θ, φr, φp, φy,

Xac, Yac, Zac

Coordinate Calculation (CC)

Sinusoidal 
Evaluation

Vector Rotation 
& Translation

Target 
Coordinate

X, Y, Z
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Conclusions and Future WorkConclusions and Future Work
� Conclusions

� SPFFI – new and innovative fault-injection system
� Simplifies fault testing
� Does not require specialized hardware
� Fills niche where other methods fall short

� Proposed a methodology for fault-injection testing
� Module- and system-level testing
� Use of combination of partial and full reconfiguration

� Complete testing is not always needed
� Confidence intervals can provide answers which are close enough

for development testing
� Demonstrated multiple case studies exemplifying use of SPFFI

� Future Work
� Support for Virtex-5 and Virtex-6 devices
� Augment BRAM injection capabilities
� Increase fault-injection speed with improved JTAG interface
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PRR3PRR2PRR1

RFT Controller

� Motivations for RFT
� Dynamically vary fault-tolerance levels 

depending on external stimuli
� Obtain high reliability during critical 

moments while maximizing 
performance (or minimizing power) 
at other times

� Partial Reconfiguration enables 
system flexibility
� Ability to move Partial Reconfiguration Modules (PRM) 

around to different Partial Reconfiguration Regions (PRR)
� Ability to modify level of fault tolerance in a single PRM
� Ability to add multiple PRMs to increase fault tolerance 

through replication
� Possible FT approaches for RFT components

� Coarse-Grained Replication (SCP, TMR)
� Algorithm-Based Fault Tolerance (ABFT)
� Error Correcting Codes (ECC)
� FT-HLL through source-to-source translation

APP1 APP2 APP3

Reconfigurable Fault ToleranceReconfigurable Fault Tolerance
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RFT Case StudyRFT Case Study
� ABFT designs detected >70% of 

errors from original design
� Hybrid design had even higher reliability

� ABFT and Hybrid designs approach 
reliability of traditional TMR
� However, TMR automatically provides 

correction

� ABFT requires additional hardware and 
cycles to correct erroneous data

� Two ABFT approaches explored
� Matrix Multiplication (MM)
� Linear Transform (LT)

� Algorithm details in appendix

� Baseline non-FT designs compared 
to multiple FT approaches
� ABFT - Original VHDL design with 

additional ABFT components

� TMR – Triplicated version of original
� Hybrid – ABFT design with key 

components triplicated

� Design reliability tested with SPFFI
� Single-bit errors injected into 

configuration memory
� Focus on LUT and routing resources

� Errors recorded and categorized for 
later analysis

Overhead
(Slice / BRAM / Cycles)

Undetected 
Errors (%)

MM – Original --- 5.75%

MM – ABFT 184% / 0% / 40% 0.76%

MM – Hybrid 196% / 0% / 40% 0.47%

MM – TMR 242% / 200% / 0% 0.66%

LT – Original --- 3.05%

LT – ABFT 149% / 100% / 5% 0.88%

LT – Hybrid 215% / 100% / 5% 0.53%

LT – TMR 284% / 200% / 0% 0.35%

LT – TMR created using 
BYU’s EDIF-based TMR tool

MM – TMR created using 
VHDL-level replication


