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Alternative Mitigation Techniques

 Triple-Modular Redundancy (TMR) is expensive

 Area 3-5x

 Timing ~20%

 Power 3-5x

 Need reduced-cost mitigation techniques

 Trade off reliability for area/timing/power

 Motivating Example:

 In-orbit experiment cannot be triplicated due to area cost

 Some mitigation is better than none

 Marking of which data is suspect would be useful
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Smart Detection

 Duplication + Detection as lower cost alternative?

 Duplication is 2/3 the size of TMR

 Duplicate With Compare only detects errors  - doesn‟t mask them 

 Can DWC be modified to mask?

 Use of „smart detector‟ to attempt to mask errors.
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Circuit copy A

Circuit copy B

Mux

Smart 

Detector

Input
Output

Not_equal

4



Smart Detector
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Statistical Smart Detector

 Statistical detection

 Use a histogram of data values 

to try and determine which 

branch is without error

 3 possible outcomes
 Correct detection

 Incorrect detection

 Ambiguous outcome
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Simple Statistical Example

 Volt meter has redundant 
probes
 TMR would be too expensive 

so we use two with a statistical 
model

 Three possible outcomes
 One probe reads 1.2V and 

other reads 5V
 Result – Ambiguous detection

 Correct circuit reads 3.3V and 
circuit in error reads 15V
 Result – Statistical model 

chooses correct voltage

 Correct circuit reads 15V and 
circuit in error reads 3.3V
 Result – Wrong voltage chosen.

Voltage Probability

3.3V 50%

1.2V 20%

5V 20%

15V 10%
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Statistical Example
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System under test

9

H1(z) ↓2 H2(z) ↓2 H3(z) ↓2 H4(z) ↓2 H5(z) ↓2

100 

samples/

symbol

50 

samples/

symbol

25 

samples/

symbol

12.5 

samples/

symbol

6.25 

samples/

symbol

length-5 

half-band  filter

length-5

half-band filter

length-9 

half-band filter

length-13 

half-band filter

length-9 

half-band filter



Initial tests – Stuck at faults

 Downsampler was created in System Generator

 Matlab was then used to create artificial stuck at faults 

and tabulate the results

 Tests run for stuck at 1 and stuck at 0 faults for all bits in the 20 

bit result
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Stuck at results
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Fault simulator

 BYU/LANL fault 

injection tool

 Based on SLAAC-1V 

board

 PCI card with 3 Virtex

1000 FPGAs

 Previously validated 

with radiation testing

 Sensitive configuration 

bits are tabulated and 

then tested one by one
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Test Methodology

 Design is loaded onto the SLAAC board and the 

sensitive configuration bits are tabulated

 Every bit in the configuration bitstream on the DUT is 

flipped individually and if there is a difference on the 

output with the golden copy then the bit is recorded as 

„sensitive‟. 

 Random numbers are fed through a QPSK 

modulator in Matlab to generate the input vector.

 The vector is then run through the original design 

without injecting faults to gather a golden output.
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Test Methodology

 The histogram is generated with 

the golden data in Matlab by 

specifying the bin size.

 If the bin size is too large, too 

many faults will map to the same 

bin resulting in ambiguity.

 Small bin sizes cause multiple 

bins to have the same counts, 

once again resulting in 

ambiguity.

 To simplify the hardware, bin 

sizes are constrained to powers 

of 2.
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Test Methodology

 The input vector is then run through the design for 

each sensitive bit and the output captured. 

 This design has 73146 sensitive bits

 The fault is inserted into the design roughly halfway 

through the execution to give a certain amount of fault 

free operation

 Matlab is then used to implement the smart 

detector and analyze the results.
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Ambiguous contribution

 Ambiguous detection 

occurs in three ways

 Four possible ways to 

count ambiguous results

 Don‟t count them at all

 Record all as a wrong choice

 Record all as a right choice

 Record half as correct

 Assuming it is fair, 50% of 

the time you should get it 

right
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Results – Correct decisions for 1024 bins

Number of 

samples 

considered 

for 

decision

Percent 

decisions 

with 

ambiguous 

outcome

No 

ambiguous 

decisions

counted

All 

ambiguous 

counted as 

wrong

Half 

ambiguous 

counted as

right

All 

ambiguous 

counted as 

right

1 34.14% 86.13% 56.73% 73.80% 90.87%

64 15.80% 88.60% 74.60% 82.50% 90.40%

256 9.83% 90.15% 81.29% 86.20% 91.12%

512 7.55% 90.96% 84.09% 87.87% 91.64%

1024 5.66% 92.05% 86.84% 89.67% 92.50%

Lower

Bound

Upper

Bound
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Results – Correct decisions for 4096 bins

Number of 

samples 

considered 

for 

decision

Percent 

decisions 

with 

ambiguous 

outcome

No 

ambiguous 

decisions

counted

All 

ambiguous 

counted as 

wrong

Half 

ambiguous 

counted as

right

All 

ambiguous 

counted as 

right

1 28.29% 85.49% 61.30% 75.45% 89.59%

64 9.59% 93.05% 84.12% 88.92% 93.71%

256 4.93% 95.29% 90.60% 93.06% 95.53%

512 3.48% 95.87% 92.53% 94.27% 96.02%

1024 2.54% 96.57% 94.12% 95.39% 96.65%

Lower

Bound

Upper

Bound

18



Results – Correct decisions for 16384 bins

Number of 

samples 

considered 

for 

decision

Percent 

decisions 

with 

ambiguous 

outcome

No 

ambiguous 

decisions

counted

All 

ambiguous 

counted as 

wrong

Half 

ambiguous 

counted as

right

All 

ambiguous 

counted as 

right

1 23.70% 88.49% 67.51% 79.36% 91.21%

64 4.39% 97.04% 92.78% 94.97% 97.17%

256 1.83% 97.69% 95.90% 96.81% 97.73%

512 1.18% 97.93% 96.77% 97.36% 97.96%

1024 .81% 98.25% 97.45% 97.86% 98.27%

Lower

Bound

Upper

Bound

19



Possible Hardware 

Implementation
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 Smart detector consists of

 Small number of BlockRAMs

 Counter

 Small amount of logic
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Conclusion

 Smart detection using a simple histogram was 

discussed

 High accuracy with very low resource costs

 Future work

 Expand statistical approach to more than just FIR filters.

 Investigate using machine learning techniques for an 

even more accurate smart model
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