
Reduced Cost Reliability via

Statistical Model Detection

Jon-Paul Anderson - PhD Student

Dr. Brent Nelson - Faculty

Dr. Mike Wirthlin - Faculty

Brigham Young University

Alternative Mitigation Techniques

 Triple-Modular Redundancy (TMR) is expensive

 Area 3-5x

 Timing ~20%

 Power 3-5x

 Need reduced-cost mitigation techniques

 Trade off reliability for area/timing/power

 Motivating Example:

 In-orbit experiment cannot be triplicated due to area cost

 Some mitigation is better than none

 Marking of which data is suspect would be useful

2

Smart Detection

 Duplication + Detection as lower cost alternative?

 Duplication is 2/3 the size of TMR

 Duplicate With Compare only detects errors - doesn‟t mask them

 Can DWC be modified to mask?

 Use of „smart detector‟ to attempt to mask errors.

Circuit copy A

Circuit copy B

Comparator
Input

Output

Not_equal

3

Smart Detector

Circuit copy A

Circuit copy B

Mux

Smart

Detector

Input
Output

Not_equal

4

Smart Detector

Circuit copy A

Circuit copy B

Mux

Smart

Detector Not_equal

Input
Output

5

Statistical Smart Detector

 Statistical detection

 Use a histogram of data values

to try and determine which

branch is without error

 3 possible outcomes
 Correct detection

 Incorrect detection

 Ambiguous outcome

6

Simple Statistical Example

 Volt meter has redundant
probes
 TMR would be too expensive

so we use two with a statistical
model

 Three possible outcomes
 One probe reads 1.2V and

other reads 5V
 Result – Ambiguous detection

 Correct circuit reads 3.3V and
circuit in error reads 15V
 Result – Statistical model

chooses correct voltage

 Correct circuit reads 15V and
circuit in error reads 3.3V
 Result – Wrong voltage chosen.

Voltage Probability

3.3V 50%

1.2V 20%

5V 20%

15V 10%

7

Statistical Example

Probe1

Probe2
Mux

2

Probe1

Probe2
Mux

2 2 1 1 2 2 2 2

Σ

Statistical model with no history

Statistical model with 8 deep sample history

8

System under test

9

H1(z) ↓2 H2(z) ↓2 H3(z) ↓2 H4(z) ↓2 H5(z) ↓2

100

samples/

symbol

50

samples/

symbol

25

samples/

symbol

12.5

samples/

symbol

6.25

samples/

symbol

length-5

half-band filter

length-5

half-band filter

length-9

half-band filter

length-13

half-band filter

length-9

half-band filter

Initial tests – Stuck at faults

 Downsampler was created in System Generator

 Matlab was then used to create artificial stuck at faults

and tabulate the results

 Tests run for stuck at 1 and stuck at 0 faults for all bits in the 20

bit result

10

Stuck at results

11

Bit position

Bit position

Fault simulator

 BYU/LANL fault

injection tool

 Based on SLAAC-1V

board

 PCI card with 3 Virtex

1000 FPGAs

 Previously validated

with radiation testing

 Sensitive configuration

bits are tabulated and

then tested one by one

12

Virtex SEU Emulator

(LANL/BYU)

DUT

“Golden

Design”

Real-Time

Comparator

Test Methodology

 Design is loaded onto the SLAAC board and the

sensitive configuration bits are tabulated

 Every bit in the configuration bitstream on the DUT is

flipped individually and if there is a difference on the

output with the golden copy then the bit is recorded as

„sensitive‟.

 Random numbers are fed through a QPSK

modulator in Matlab to generate the input vector.

 The vector is then run through the original design

without injecting faults to gather a golden output.

13

Test Methodology

 The histogram is generated with

the golden data in Matlab by

specifying the bin size.

 If the bin size is too large, too

many faults will map to the same

bin resulting in ambiguity.

 Small bin sizes cause multiple

bins to have the same counts,

once again resulting in

ambiguity.

 To simplify the hardware, bin

sizes are constrained to powers

of 2.

14

Test Methodology

 The input vector is then run through the design for

each sensitive bit and the output captured.

 This design has 73146 sensitive bits

 The fault is inserted into the design roughly halfway

through the execution to give a certain amount of fault

free operation

 Matlab is then used to implement the smart

detector and analyze the results.

15

Ambiguous contribution

 Ambiguous detection

occurs in three ways

 Four possible ways to

count ambiguous results

 Don‟t count them at all

 Record all as a wrong choice

 Record all as a right choice

 Record half as correct

 Assuming it is fair, 50% of

the time you should get it

right

16

A B

Map to

bins with

same

value

Map to

the same

bin

A B

B B A A B B A A

Σ History has

equal

choices for

A and B

Results – Correct decisions for 1024 bins

Number of

samples

considered

for

decision

Percent

decisions

with

ambiguous

outcome

No

ambiguous

decisions

counted

All

ambiguous

counted as

wrong

Half

ambiguous

counted as

right

All

ambiguous

counted as

right

1 34.14% 86.13% 56.73% 73.80% 90.87%

64 15.80% 88.60% 74.60% 82.50% 90.40%

256 9.83% 90.15% 81.29% 86.20% 91.12%

512 7.55% 90.96% 84.09% 87.87% 91.64%

1024 5.66% 92.05% 86.84% 89.67% 92.50%

Lower

Bound

Upper

Bound

17

Results – Correct decisions for 4096 bins

Number of

samples

considered

for

decision

Percent

decisions

with

ambiguous

outcome

No

ambiguous

decisions

counted

All

ambiguous

counted as

wrong

Half

ambiguous

counted as

right

All

ambiguous

counted as

right

1 28.29% 85.49% 61.30% 75.45% 89.59%

64 9.59% 93.05% 84.12% 88.92% 93.71%

256 4.93% 95.29% 90.60% 93.06% 95.53%

512 3.48% 95.87% 92.53% 94.27% 96.02%

1024 2.54% 96.57% 94.12% 95.39% 96.65%

Lower

Bound

Upper

Bound

18

Results – Correct decisions for 16384 bins

Number of

samples

considered

for

decision

Percent

decisions

with

ambiguous

outcome

No

ambiguous

decisions

counted

All

ambiguous

counted as

wrong

Half

ambiguous

counted as

right

All

ambiguous

counted as

right

1 23.70% 88.49% 67.51% 79.36% 91.21%

64 4.39% 97.04% 92.78% 94.97% 97.17%

256 1.83% 97.69% 95.90% 96.81% 97.73%

512 1.18% 97.93% 96.77% 97.36% 97.96%

1024 .81% 98.25% 97.45% 97.86% 98.27%

Lower

Bound

Upper

Bound

19

Possible Hardware

Implementation

20

 Smart detector consists of

 Small number of BlockRAMs

 Counter

 Small amount of logic

A

B

=? Difference

Single

sample

vote

Golden

Histogram

FIFO

Accumulator

Decision

Dual-port

BlockRAM

Counter

Dual-port

BlockRAM

Logic

Logic

Conclusion

 Smart detection using a simple histogram was

discussed

 High accuracy with very low resource costs

 Future work

 Expand statistical approach to more than just FIR filters.

 Investigate using machine learning techniques for an

even more accurate smart model

21

