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Abstract— A number of publications have examined automated
fault tolerance techniques for software running on commercial
off-the-shelf microcontrollers. Recently, we published an auto-
mated compiler-based protection tool called COmpiler Assisted
Software fault Tolerance (COAST), a tool that automatically
inserts dual- or triple-modular redundancy into software pro-
grams. In this study, we use COAST to explore how the
effectiveness of automated fault protection varies between dif-
ferent benchmarks, tested on an ARM Cortex-A9 platform. Our
hypothesis is that certain benchmark characteristics are more
likely than others to influence the effectiveness of automated
fault protection. Through neutron radiation testing at the Los
Alamos Neutron Science Center (LANSCE), we show that cross
section improvements vary from 1.6x to 54x across eight
benchmark variants. We then explore the characteristics of these
benchmarks and investigate how properties of these benchmarks
may impact the effectiveness of automated fault protection.
Finally, we leverage a novel fault injection platform to isolate two
of these benchmark characteristics and validate our hypotheses.

Index Terms—Silent data corruption (SDC), single-event upset
(SEU), soft errors, software fault tolerance.

I. INTRODUCTION
ADIATION-HARDENED processors are typically much
more expensive and offer lower performance than com-

mercial off-the-shelf (COTS) equivalents. This provides an
incentive for finding software-based techniques that increase
the fault tolerance of COTS microprocessors, so they can be
used in high radiation environments, such as space.

Recent studies have explored different methods for pro-
viding programs with fault tolerance through pure software
approaches. A common way of providing fault tolerance
is through replicating program instructions and/or variables.
By inserting one or two replicas of every software operation,
faults can be detected and reported or corrected at runtime.
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There is certainly a performance cost for this type of protec-
tion, but this kind of approach has been shown to be successful
at reducing the overall error rate and increasing the mean work
to failure (MWTEF) [1]-[4].

There are different ways of adding duplicated and triplicated
instructions, such as modifying the architecture assembly code
by hand [1], [2]. As this is not the most ideal solution,
other works have studied automated methods of applying
mitigation techniques [1], [5]-[10]. However, to the best of
our knowledge, none of these works have provided a publicly
available, open-source tool that others can use to replicate the
work, or to use on new projects.

In July 2018, we released COmpiler Assisted Software
Fault Tolerance (COAST), a compiler-based tool that automat-
ically applies existing software mitigation techniques to user
software. The tool is open-source and publicly available at
https://github.com/byuccl/coast. Since COAST is much more
automated and flexible than previous work in this area, it is
suitable as a tool to explore the effectiveness of software
protection on different processing platforms and benchmarks.
In recent work, we showed how software protection could
be applied to several different architectures (MSP 430, ARM
32-bit and 64-bit, and RISC-V) [11], [12]. Across different
target architectures, we saw decreases in cross section ranging
from 4x to 106x.

Most of the previous works that explored automated pro-
tection provided experimental results on just a couple key
benchmarks. The automated nature of our work allows us
to explore the effectiveness of software protection on a wide
range of benchmarks. In this work, we aim to explore and
understand what characteristics of particular benchmarks make
them more apt for protection through data and instruction
replication. Rather than varying the platform, we vary the
program. The results from testing multiple benchmarks will
allow us to better understand how the effectiveness of auto-
mated protection changes from benchmark to benchmark
and ideally help designers to understand why automated
protection may or may not provide substantial reliability
improvements.

While we would ideally apply our tool to tens or hundreds of
different C programs and build an accurate predictive model,
this is not feasible. Limited access to radiation testing facilities
combined with the relatively low frequency of errors means
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we must restrict the number of benchmarks to a small sample
set.
The main contributions of this article are:

1) Experimental testing of multiple C programs at the
Los Alamos Neutron Science Center (LANSCE). The
platform under study, the 32-bit Xilinx ZYNQ ARM
Cortex-A9, had eight benchmarks tested on it. Across
all these benchmarks, we saw reduction in cross sections
from 1.6x to 54x.

2) An analysis of the experimental results, from which we
draw insights into benchmark characteristics that may
commonly impact software-based fault protection.

3) A fault injection framework that is used to isolate and
validate two benchmark properties that impact fault
protection effectiveness.

The article is organized as follows: Section II gives more
background on related work and the COAST tool. Section III
outlines the way in which we tested our benchmarks in a
radiation beam and shows the results thereof. Section IV ana-
lyzes the radiation test results and benchmark characteristics.
Section V details our subsequent fault-injection study, and
Section VI provides conclusions.

II. BACKGROUND
A. Related Work

There have been several works which have investigated
adding fault mitigation to software programs. Error Detec-
tion by Duplicated Instructions (EDDI) [5] first presented
techniques for fine-grained duplication of instructions. These
techniques duplicate all instructions and variables while main-
taining a single control flow, which requires synchronization
of data-flows before any control-flow branching or function
calls. This technique is also known as Duplicate With Com-
pare (DWC) and allows for detecting errors at the cost of
increased code size and execution time.

Later work introduced SWIFT-R [9], which extended this
type of technique to triplication, allowing for not only error
detection, but also correction. This is similar to triple modular
redundancy (TMR) in hardware and is often referred to by this
name in software as well. Software TMR has an even higher
cost in code size and execution time than DWC, but with the
added benefit of being able to tolerate errors without a reset
or rollback.

There have been other works which explored different
replication and synchronization rules, as this is an important
factor when evaluating tradeoffs between increased run time
and fault coverage. Chielle et al. [13] presented a set of
rules that can be used to guide decisions about replication
and synchronization. The COAST tool implements software
protection based on some of these rules.

Although there have been many recent works exploring dif-
ferent variations and optimizations on these basic DWC/TMR
techniques [1]-[4], [7], [8], [14]-[19], there is no other current
tool that offers the automation and flexibility of COAST. These
previous works have used hand-modified assembly code, relied
on specific architectures or assembly code formats, or lever-
aged specific processor features to obtain fault tolerance.
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do: do:

Id r0 Id r0 = i
Id r10 = i_copy
Id r20 = i_copy2

1l
—-

rl = sub r0, 1 rl = sub r0, 1
rll = sub r10, 1
r21 = sub r20, 1

r2 =cmp rl, 0 r2 =cmp rl, 0

r12 = cmp rll, 0

r22 = cmp r21, 0

r3 = cmp r2, r12

r4 = select r3, r2, r22
br neq r4 do

br neq rl do
(@ (b)

Fig. 1. Code before and after TMR mitigation, from [11]. (a) Original code.
(b) TMR code.

In addition, none of these works are available as open-source
tools, and very few have been tested in an actual high-radiation
environment.

B. COAST

Our software protection tool, COAST, automatically adds
data-flow protection to arbitrary user programs. The default
configuration (and the configuration used in our experiments)
is based on the VAR3 scheme from [6], which is to replicate all
compute and memory load/store instructions and to synchro-
nize as necessary before control flow instructions. However,
the COAST tool is very configurable; it supports both DWC
and TMR modes, as well as changing some of the replication
and synchronization rules. Synchronization consists of (for
DWC) a comparison of the two data flows, or (for TMR) a
voter which determines the correct value based on the three
copies. The replication of existing instructions and insertion
of synchronization instructions is fully automated as part of
the program compilation.

Fig. 1 shows an example of what some assembly code would
look like before and after it is run through COAST. The bold
text shows the changes made by our compiler pass.

In our past work, we focused on proving the usefulness
of COAST [20], or showing its usefulness on multiple target
architectures [11]. In this work, we aim to show which types
of benchmarks can benefit the most from being protected with
software techniques.

IIT1. RADIATION TEST

Radiation testing offers a realistic view into the effectiveness
of fault mitigation techniques; however, the high cost and
relatively low availability of testing facilities often means that
only a few system configurations can be evaluated. In the
past work, we observed that fault mitigation was much more
effective on some benchmarks than others.

The goal of this test was to evaluate several benchmarks on
a single platform, to gain an understanding of what software
characteristics are present in benchmarks which benefit more
from software-based fault protection. We tested eight different
benchmarks executing on three identical Xilinx PYNQ devel-
opment boards. Testing was performed at the LANSCE over
the span of 5 days.
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Fig. 2. Neutron beam test setup.

A. Methodology

1) Device Under Test: The device under test (DUT) was a
ZYNQ XC7Z020 SoC field-programmable gate array (FPGA),
which contains an embedded dual-core 32-bit 667-MHz 28-nm
ARM A9 processor. There is a 32-KB instruction cache,
32-KB data cache, and a 512-KB unified cache per core (non-
ECC). Only one core of the processor was used in the test, and
the FPGA fabric was not utilized or tested. The platform was
configured as a bare-metal system, with only essential board
support package (BSP) software. The 30-L flight path (Ice
House) was used, and the three boards were placed 99, 101,
and 106 cm from the neutron detector. These distances were
accounted for when determining the fluence received by each
board during the experiments. Each board was placed, so the
A9’s external DRAM chip was outside of the 2” diameter
neutron beam. Fig. 2 provides a photograph of the setup, which
includes boards from several other experiments.

During the experiment, each benchmark runs some compu-
tation operation and then checks the result against a known
golden value. In cases where the program output is a small
value, such as crc32, the golden value is the exact program
output. For other benchmarks, the golden value is a hash of a
larger output (the M x M matrix multiplication benchmark
hashes the resultant matrix), or in the case of the gsort
benchmark, the code ensures the result is sorted. This approach
to output validation aims to minimize cases where the golden
value, which is not protected, can be corrupted while the
program executes.

The benchmarks repeatedly execute the same computation
operation, periodically printing a heartbeat message via UART,
which is monitored by a computer that is outside the path of
the neutron beam. If the computed value does not match the
golden value, the program immediately prints an error message
to the monitoring computer. In these cases, the controlling
system power cycles the board and reprograms the software.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 5, MAY 2021

Other events can also trigger a reprogramming, including a
malformed output, or a heartbeat timeout.

In the experiments described in this article, we employ
the TMR option of COAST, which inserts voter opera-
tions at branch points in the program. We also enable the
-countErrors option which allows for enhanced voter
code that tracks whether any fault was detected and corrected.
While this introduces some extra overhead that would not be
used on a deployed system, it provides useful data for our
experiment. When faults are detected, they are reported to the
controlling system, and they also trigger a power cycle.

B. Benchmarks

We used eight different benchmarks in our test, as outlined

below:
crc32: A 32-bit Cyclic Redundancy Check. This

computes the hash of a statically defined
table of 32-bit values.
From the MiBench test suite, this finds the
shortest path between a predefined set of
nodes.
Matrix multiplication, tested with two sizes:
Fit L1, where the matrices were sized to all
fit in the L1 cache (when triplicated), and Fit
L2, where they likewise fit in the L2 cache.
A simple JPEG decoder'; input data is a
JPEG image converted to a C array.
Sort an array of floating-point numbers.
Tested in two configurations: Library, where
we use the C standard library implementa-
tion of gsort, which is notably not pro-
tected by our tool; and Custom, which uses
our own code for the sorting kernel, which
allows protection to be enabled on the entire
algorithm.
Computes the SHA-256 hash of a statically
defined array.

Each benchmark was compiled and tested using an orig-
inal unmitigated version and a TMR’d version produced by
COAST.

dijkstra:

matrixMultiply:

nanojpeg:

qsort:

sha256:

C. Radiation Test Results

The results from our experiment are shown in Table I. The
first column lists the benchmark and protection configuration.
The next column lists the total Fluence received for each
benchmark configuration, which was calculated by correlat-
ing timestamps for when each benchmark was running with
timestamped flux measurement logs from LANSCE. The next
set of columns list the different abnormal statuses encountered
during repeated benchmark execution. The Faults column lists
the number of times the TMR voters in the code detected and
corrected a fault. Errors are the number of times the benchmark
computed a result which did not match the golden value. A
Hang was recorded when the benchmark heartbeat stopped
responding for a significant amount of time (about 10x the

Ibased on https://keyj.emphy.de/nanojpeg/
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TABLE I
NEUTRON BEAM TEST RESULTS
Configuration Fluence Faults Errors Hangs/ Code Size Runtime Cro.ss
(Bench, Options) mem2) MR gy Invalid (KB) (ms) Section MWTF
’ Fixed) Status (cm2)

cre32, Unmit 2.41 x 107 N/A 5 /1 159 - 936 - 2.08 x 10~7 - -
cre32, TMR 2.6 x 108 20 0 11/1 191 1 1.201x 1162 1 1.241x  **3.84 x 10~2 | 53.99x 1 43.49x
dijkstra, Unmit 1.14 x 10° N/A 0 7612 171 - 478 - #4881 x 10710 - -
dijkstra, TMR 6.25 x 10 13 0 356/1 191 1 1117x 2414 1 5.05x ##1.6 x 10710 1551x 1 1.09x
MxM, Unmit, L2 1.23 x 108 N/A 24 12/0 307 - 212 - 1.95 x 10~7 - -
MxM, TMR, L2 4.97 x 108 101 7 47/0 536 T 175x 640 1 3.02x 1.41 x10-8 | 13.85x 1 4.58x
MxM, Unmit, L1 8.06 x 108 N/A 3 36/0 209 - 1528 - 3.72 x 1079 - -
MxM, TMR, L1 1.14 x 1010 14 1 519/3 228 1 1.09x 2897 1 1.9x 8.8 x 10711 | 42.28x 1 22.3x
nanojpeg, Unmit 5.85 x 10 N/A 47 324/1 187 - 324 - 8.04 x 1079 - -
nanojpeg, TMR 7.27 x 109 119 22 329/1 241 11.29x 2503 1 7.73x 3.02x 1079 | 2.66x | 291x
gsortLib, Unmit 8.62 x 10 N/A 2 464/4 290 - 77 - 2.32 x 1010 - -
gsortLib, TMR 6.85 x 10 13 0 333/2 429 1 1.48x 189 1 245x  *#1.46 x 10~10 1 1.59x | 1.54x
gsortCustom, Unmit  5.25 x 10 N/A 10 255/0 290 - 271 - 1.9 x 107? - -
gsortCustom, TMR ~ 2.29 x 1010 22 0 11190 429  11.48x 880 1 3.18x **4.37 x 10~11 | 43.61x 1 13.73x
sha256, Unmit 5.21 x 107 N/A 4 2/241 138 - 14 - 7.68 x 108 - -
sha256, TMR 2.13 x 108 30 2 10/0 215 1 1.56x 57 1 4.07x 9.37x 1079 | 819x 1 1.95x

**No errors observed, so this is calculated given one error (assuming the worst-case, where an error could be observed on the next neutron).

expected heartbeat interval). An Invalid Status was recorded
any time the UART message from the benchmark did not
match the expected regular expression format. Any of these
unsuccessful runs triggered a reset of the board.

The columns Code Size and Runtime are for comparing the
overhead required for COAST protection against the original
version of the benchmark. Code Size is the size of the compiled
ELF file, measured in kilobyte.

The column Cross Section measures the error rate according
to the following equation:

Errors (SDC)
—_—. (1)
Fluence

The results show that the COAST TMR protection reduces
cross section by 1.0x to 54 x, indicating that the characteris-
tics of the benchmark significantly influence the effectiveness
of the fault mitigation. The cross section results from Table I
are summarized in Fig. 3, which shows the cross section for
each of the benchmarks with 95% confidence error bars.

Along with cross section, we have the indicator mean work
to failure (MWTF) that puts cross section in the context of
the run-time overhead. In other words, benchmarks which run
longer have more time during which they can be upset. The
equation for calculating MWTF is given by the following
equation:

Cross Section =

amount of work completed

MWTF =
number of errors encountered

= (raw error rate - AVF - execution time) .

)

When taking run time into consideration, it can be seen
that while most benchmarks improved in MWTF (1.1x-43x),
there were a couple that degraded (nanojpeg and gsortLib),
meaning that the improvement in cross section is not sufficient
to overcome the increased fault rate due to the longer runtime.

IV. BENCHMARK ANALYSIS

When we began this test, we had hopes of using the data to
construct a model from which to predict the fault coverage
of future programs when protected by COAST. However,
it quickly become apparent that there are simply too many
factors at play to develop an accurate predictive model and
doing so would require many more benchmarks and hours of
radiation testing, which would be infeasible. However, it was
still our intention to gather as much insights into the data we
were able to collect, to help learn some lessons for future work,
and gather insights that may be helpful for future engineers
attempting to apply automated software protection.

The approach we took was to analyze the set of benchmarks
we tested in radiation, to determine whether we could find
benchmark properties that would correlate with the improve-
ment in reliability when automated software protection was
applied. More specifically, we tried to identify a set of
benchmark properties that correlated with the factor decrease
to cross section when automated protection was applied to
our benchmark set. To do this, we identified a large set of
benchmark characteristics and then determined which subset
of these provided the best fit using multiple linear regression.

We recognize that our benchmark set is limited, and with
small data sets it may be easy to infer correlation between
data when it does not really exist, so we choose to use these
identified characteristics to motivate further fault injection
testing to validate that these characteristics impact the effec-
tiveness of automated protection. These fault injection results
are presented in Section V.

A. Characteristic Set

The set of characteristics we found to be most impactful
were the following:
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Fig. 3. Benchmark cross sections, 95% confidence interval.
1) Peak Heap Usage (in kbytes). Negatively correlated there are still meaningful design lessons to be learned from
with effectiveness of fault protection. the characteristics we analyzed.
2) Static Memory Size. Size of global variables in memory We now discuss each of these characteristics in greater
(.data and.bss section counted, in kbytes) Positively detail.
correlated with effectiveness of fault protection.
3) Sync Points/s. How many times a synchronization voter 5 P¢ak Heap Usage
was hit per second of program execution.Positively cor- Our results indicated that an increase in heap usage nega-
related with effectiveness of fault protection. tively correlated with the effectiveness of our automated fault
4) Fault Tolerance of Unprotected Benchmark. This protection. Peak heap usage was obtained using the dynamic

characteristic measures the cross section (cm~2) of the
unmitigated program, determined from our experimental
data. Unmitigated cross section is positively correlated
with effectiveness of fault protection.

There were several other benchmark characteristics that
we examined that either showed no meaningful correlation
for our benchmark set or were redundant when considered
with other properties. These characteristics included maximum
resident set size (memory), read/write ratio, error rate from
fault injection on the register file, and all combinations of
cache access characteristics for each of the L1 and L2 caches.
Although these were not influential for the data set we obtained
from the radiation testing, it is certainly possible that some of
these characteristics could affect the applicability of our fault
mitigation techniques if other benchmarks were used, or if a
more thorough regression was performed that included a larger
data set or more characteristics.

Furthermore, our set of characteristics is not meant to be
an exhaustive list of meaningful benchmark properties. It is
very possible that there are other benchmark properties that
we failed to identify that may serve as good predictors of the
effectiveness automated fault protection. However, we feel that

analysis tool massif, from the valgrind tool suite. In our
benchmark set, only a few programs used the heap, with
nanojpeg and gsort-Library being the largest users.
Since the Static Memory Size positively affected cross section
performance, we concluded that it was not actually the mem-
ory usage itself that was the primary issue, but rather the
calls to malloc, and the way that it manages heap memory.
It seems that the more often malloc is called, the less
effective COAST is at protecting the code. There are a couple
of reasons we expect this is the case: 1) since malloc is
a library function, it cannot be protected by COAST and
2) even when the memory regions are passed back to the
protected code, malloc’d regions have special header/footer
metadata sections that COAST cannot synchronize. These
metadata sections are used by subsequent calls to malloc
and free to determine how each block of memory should be
managed. If a fault occurs in any of these special regions, it is
likely unrecoverable. Based on this, we believe that it is best
to avoid using dynamic memory allocation when wanting to
perform software-based fault mitigation. As a second point of
reference, the Jet Propulsion Laboratory (JPL) coding standard
strongly discourages dynamic memory allocation.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 27,2021 at 16:50:14 UTC from IEEE Xplore. Restrictions apply.



JAMES et al.: INVESTIGATING HOW SOFTWARE CHARACTERISTICS IMPACT EFFECTIVENESS

C. Static Memory Size

Static memory usage was determined by inspecting the
program executables using the readel £ utility and observing
the sizes of the .data and .bss sections. The positive cor-
relation indicates that we expect fault tolerance effectiveness
to increase as the amount of memory set aside for variables
increases. In our test platform, the main memory consists
of a large DRAM chip, which is outside of the beam path
and naturally more resistant to radiation-based upsets than
SRAM [21]. However, data in the processor caches is still
highly susceptible to faults and our previous test results indi-
cate that COAST is effective at protecting values that reside
in caches [12]. Furthermore, COAST, and other tools like it
that apply protection through data replication are inherently
designed to protect against data upsets. These approaches do
not target upsets that could happen to control-flow elements
such as the PC register, return values on the stack, and so on.
Since these data-replication approaches are designed to target
upsets in data memory, it is not surprising that as programs
become more data-heavy, and data sets increase in size, these
tools are more effective at protecting against upsets.

To be more precise, although this characteristic is called
“static memory size,” it is actually the total size of the .data
and .bss sections of the ELF file. These sections represent
the majority of the data variables, besides those that are
allocated from the .heap section, which is described in the
previous characteristic. In summary, we believe that the more
data variables there are, the better able COAST is at protecting
the program.

Some of this behavior may be due to the cache configu-
ration of the platform under test. In our previous radiation
experiments [12], we tested the PYNQ board with and with-
out caches enabled. The error rate with the caches enabled
was noticeably higher than the error rate with the caches
disabled. This means that the errors are more likely to occur
in the caches than in main memory or the processor registers.
So COAST is helpful in this case because the cross section is
so much higher with the caches enabled that there’s plenty of
room for improvement. It is possible that a different memory
hierarchy configuration would have different behavior under
a high radiation environment. When application designers are
considering using automated protection to provide fault toler-
ance, they will need to take these architectural features into
account when anticipating whether automated fault protection
will be effective.

D. Synchronization Points/s

Synchronization points, or voters, are locations in the code
where the automated fault protection has inserted operations
that inspect the redundant copies of a piece of data and vote
on which value should be propagated into the future.

The number of synchronization points encountered during
normal execution was determined by modifying our compiler
tool to automatically instrument the code such that it would
increment a global counter each time a synchronization point
was encountered. This number was then divided by the pro-
gram execution time.
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Our results suggest that benchmarks that synchronize more
often will see more benefit from our protection techniques.
The reason is due to the granularity of replication afforded by
COAST. The data flow is replicated at the instruction level,
so any data errors could be checked for as often as every three
cycles. Although this is somewhat extreme, the general rule is,
the sooner the error is detected and corrected, the less chance
it has of propagating through the system.

One thing to keep in mind is that it is possible to have
too many sync points. Although synchronization allows the
TMR’d code to detect/correct errors, it does introduce a
potential single point of failure. The code that does the voting
is vulnerable to upsets, which represents a failure mode that
did not exist in the original, unmitigated version of the code.
Analyzing these sync points would be very difficult, as it is
not as straightforward as simply measuring the memory usage
as in other predictors. The sync points can vary distinctly in
quantity, type (data store vs branch comparison), and place-
ment. However, it appears that with the benchmarks tested,
we did not exceed the ratio of normal code to synchronization
code that would cause it to perform worse.

E. Fault Tolerance of Unprotected Benchmark

Our model is designed to measure improvement to cross
section; however, it is important to note that if the benchmark
was already inherently fault-tolerant, there may be fewer
opportunities for COAST to improve its cross section.

We used the radiation test cross section results from the
unprotected benchmarks to determine how naturally suscep-
tible each benchmark was to upsets. Or put another way,
the cross section of the unmitigated benchmark provides
indication of how likely an upset will manifest as an error
in the program output. The larger the cross section, the less
fault-tolerant a benchmark is, and thus, there are more opportu-
nities to improve reliability through automated fault protection.
On the other hand, if a benchmark has very low cross section,
it may already naturally mask faults, and the runtime and
memory overheads of imposing automated fault protection
may not be worth it.

An example of this is seen in the guicksort benchmarks:
our golden checking code ensures that the values were sorted
correctly; however, it does not actually check that no bits were
flipped. Thus, many faults could be naturally masked. While
this may not be desirable for an actual sorting benchmark,
it would likely arise in other benchmarks, such as machine
learning algorithms which have been shown to be somewhat
fault tolerant [22].

V. VALIDATING CHARACTERISTICS THROUGH
FAULT INJECTION TESTING

In order to validate some of the trends we observed in
our radiation testing, we devised a set of experiments to try
and isolate a couple of particular benchmark characteristics
and then use fault injection testing to determine how the
changes impact the effectiveness of our automated protection
scheme.
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A. Fault Injection Experiments

We created two different fault injection experiments.

1) Matrix Multiply Size: We modified our matrix multi-
plication benchmark to vary the sizes of the input matrices.
These matrices are stored entirely in static memory, so this was
done to validate our observation that our automated protection
approach is more effective on benchmarks with larger data
sizes. In this experiment, we tested four different matrix sizes:
30 x 30, 75 x 75, 120 x 120, and 180 x 180. In each case,
we created an unmitigated version of the benchmark and then
a protected version where TMR protection was applied to the
code.

In this experiment, we are interested in observing whether
the decrease in error rate obtained by TMR protection does
indeed improve as the matrix size increases.

2) Inherent Benchmark Fault Tolerance: The other experi-
ment we performed is designed to explore our observation that
benchmarks which already mask upsets will not see as much
improvement with TMR protection.

In this case, we modified our gsortLib benchmark. In the
original version, an unsorted array is input into the function,
and the quick sort algorithm sorts the values. The golden
checking code at the end of the benchmark checks that the
values in the array are indeed in sorted order. It is important
to recognize that this approach will inherently mask many
upsets. This is the case for a couple of reasons. First, if an
array entry is sorted into place and then a bit is flipped, it may
often still be in sorted order (especially if a lower order bit
was flipped). In addition, if a bit is flipped in an array entry
before it is sorted into place, the algorithm may still produce
a sorted array, even though the final array may be different
than the original data set.

We then took this fault-tolerant version of quick sort and
modified the golden checking code to instead produce a hash
of the sorted values. If this hash did not exactly match a golden
hash value, an error is reported. This removes the natural fault
tolerance of the algorithm and will instead report an error if
any single bit of the array data is modified.

B. Fault Injection Framework

To evaluate these benchmark characteristics, we per-
formed fault injection using our own custom-designed
fault injection platform “Platform for ACtive Injection of
Faults In a Campaign” (PACIFIC). This framework, which
we are publicly releasing as part of our COAST tool
(https://github.com/byuccl/coast), approximates radiation test-
ing using randomly injected faults into software while it is
executing. Our fault injection tool uses QEMU, a popular
machine emulator, to perform fault injections at random loca-
tions in memory, and at random points in time during program
execution.

While many other fault injection tools exist [23]-[27], our
fault injection framework is noteworthy for a few reasons:
1) It leverages custom QEMU plugins, rather than requir-
ing modifications to the QEMU source code like previous
tools; 2) it supports fault injection on bare-metal programs;
3) fault injections are granular to the processor-cycle level; and
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4) it is specifically designed to allow simulating fault injections
in the processor cache.

Testing is done in the form of a fault injection “campaign,”
where the user specifies 1) the executable to be tested; 2) the
section to be targeted; and 3) the number of faults to inject.
The campaign supervisor will manage then QEMU and GNU
debugger (GDB) instances and inject the specified number
of faults, randomly distributed across the bits in the desired
section. This is done over multiple runs of the program,
where on each execution, the processor is paused and GDB
is used to flip a single bit before execution is allowed to
continue. If execution of the program does not finish, there is
a watchdog which will detect if the program has gone on too
long, so it can be forcibly ended. The different possible results
are: success, error detected, fault corrected, invalid output, and
timeout. Fig. 4 provides a system diagram of our fault injection
framework.

In our experiments, we specifically chose to target the
processor caches, since the bits in the caches represent a sig-
nificant target for radiation-induced upsets [28], [29], and our
previous radiation testing on the same platform [12] indicated
that cache upsets were responsible for a large fraction of our
errors.

Our framework is able to specifically target caches by using
a QEMU plugin that “subscribes” to execution of all data load
and store instructions and will update an internal model of
the processor caches. It maintains a model of what addresses
in memory are resident in cache at any point of program
execution, allowing us to inject faults specifically into these
memory addresses.

The QEMU plugin system is also leveraged to enable
cycle-accurate injection points. This second QEMU plugin
subscribes to instruction execution events, allowing the plugin
to monitor each time an instruction is executed. This means
that we can randomly inject after any number of instructions
and provides much finer control and better distribution than
simply sleeping the process for a random amount of time and
then pausing execution. This fined-grained approach does add
significant runtime overhead and means that thorough fault
injection campaigns can take hours or days to complete.

C. Fault Injection Results

The results of the fault injection experiments are provided
in Table II.

The variations on the matrix multiplication benchmark con-
firm our hypothesis that COAST will provide more protection
against errors when the program uses more static memory.
The error rate decreases for the 30 x 30, 75 x 75, 120 x 120,
and 180 x 180 matrix sizes are 12x, 354x, 1491x, and
2940 x, respectively. These values show that COAST is highly
effective at protecting against upsets in the cache and the
effectiveness increases with data size. However, it is important
to recognize that fault injection does not perfectly reflect
real radiation effects and these results likely overestimate the
effectiveness of protection. This is because the fault injection
does not capture many upsets that COAST cannot fix, such
as upsets in the program counter, control-flow structures,
or internal processor state.
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Supervisor instructs plugin on
which cycle to inject the fault.
Plugin reports current
cache contents.

( Campaign Supervisor

” Python scripts manage the campaign
and all subprocesses.

Supervisor reads stdout

upervisor requests values

where to inject faults.

e p -
QEMU Instance GDB Client reads GDB Client
. W and writes values - .
QEMU v4.2 configured for < in the emulated »|  Connects to QEMU instance. Runs
plugins. Models the target QEMU system Python scripts that communicate with
\_ architecture. Y, supervisor. Performs the bit flips.
( Cache Plugin A
User plugin models cache
accesses and tracks
\_ processor cycles. Y,
Fig. 4. PACIFIC fault injection framework.
TABLE II
FAULT INJECTION RESULTS
. Faults Hangs/
(B(i‘l’l‘c‘ﬂg‘gat‘i‘gl‘:s) # Runs (TMR ](ZS”B"C")S Invalid %’;fer MWTF
» UP Fixed) Status
Matrix Multiply
30x30, Unmit 4000 0 28 1/0 0.70% - -
30x30, TMR 35000 2473 20 126/1 0.06% } 12.25x 1T 3.42x
75x75, Unmit 1000 0 122 0/0  12.20% - -
75x75, TMR 58000 14964 20 49/3 0.03% J 353.8x 1 84.81x
120x120, Unmit 1000 0 257 1/0  25.70% - -
120x120, TMR 116000 69276 20 7412 0.02% | 1490.6x 1 169.57x
180x180, Unmit 1000 0 490 1/0  49.00% - -
180x180, TMR 66000 53745 11 28/0 0.02% J 2940x 1 910.29x
gsortLib
Check Sorted, Unmit 2000 0 39 2/0 1.95% - -
Check Sorted, TMR 217000 16276 30 279/1 0.01% J 141.1x 1 60.2x
Check Hash, Unmit 1000 0 162 1/0  16.20% - -
Check Hash, TMR 53000 17110 106/0 0.04% ] 429.3x 1 265.58x

The experiment on the quicksort algorithm also confirmed
our hypothesis regarding algorithms that are inherently fault-
tolerant. The TMR protection used by COAST provided a
greater benefit on the hash-checking version, which reported
an error whenever the simple XOR hash of the data detected a
bit mismatch. The version that only checked that numbers were
sorted (which could naturally mask upsets) did not achieve the
same improvement. The difference was a 141x decrease in
error rate versus 429 x.

It is important to recognize that the fault-tolerant version
still has a lower raw error rate, as it is more likely to mask
upsets. However, the improvement provided by protection is
not as significant. This is an important consideration for those
looking to protect algorithms that may already naturally mask
bit upsets, as the lower effectiveness offered by automated
fault protection may not be worth the runtime and memory
overheads.

VI. CONCLUSION

In this article, we have presented radiation test results of
several benchmarks, tested both in their original form and with
automated fault protection applied. The results demonstrate
that the effectiveness of automated protection varies greatly
from benchmark to benchmark, with cross section improve-
ments ranging from 1.6x to 54 x.

We analyzed several properties of the tested benchmarks
to determine where correlations exist between the benchmark
properties and the effectiveness of fault protection. While our
data set is limited, it appears that some important benchmark
characteristics include whether static or dynamic memory is
used, the size of the data sets, how often replicated data is
synchronized, and the inherent fault tolerance of the original
algorithm.

Finally, we isolated and validated two of these properties
(data size and inherent fault tolerance) through extensive fault
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injection, leveraging our custom-designed QEMU-based fault
injection framework. In both cases, the results validated what
was observed in our original radiation testing.

The results of this work demonstrate how variations in
algorithms and software workloads have a large impact on the
effectiveness of automated fault tolerance. We hope that this
work will spur further exploration into improving automated
techniques for software reliability.
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