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Abstract—Since increasing demand for high bit-depth video 

places large demands upon resources, such as communication 

bandwidth as well as memory and storage capacity, research 

into improving the compression ratio (CR) for these videos is 

critically important. Most conventional video encoders are not 

amenable to high bit-depth format, so this paper presents 

novel preprocessing methods designed to improve CR of high 

bit-depth grayscale video by transforming raw data such that 

the video can be compressed using conventional encoders. We 

present five preprocessing methods: filtering, region of interest 

(ROI), factoring, SuperFrame, and bit-stream splitting (BSS). 

Results show tradeoffs for each method, with respect to CR 

and data quality. The greatest increases in CR are obtained 

using SuperFrame, BSS, and factoring, and combining these 

methods increases CR even further. With our focus upon 

tradeoffs between CR and data quality, our new methods, 

results, and analysis enable system designers to select 

appropriate preprocessing method(s) based upon their specific 

system and mission requirements. 
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1. INTRODUCTION 

Increasing demand for higher data quality is prevalent in 

many computing domains, especially aerospace and defense 

domains, where this increase enables improved data analysis 

for critical and sensitive applications, such as surveillance 

systems, object tracking, space science, etc. One way to 

improve the video quality is to increase the video format’s 

bit-depth from the typical 8-bit consumer video to a higher 

bit-depth (e.g., any video containing more than 8 bits per 

pixel, such as 14- or 16-bit), which vastly increases the 

resolution and data information per video frame. However, 

the tradeoff for increased bit-depth is increased resource 

requirements, such as memory storage, computational 

demands, communication bandwidth, etc., which may 

preclude usage in highly resource-constrained systems, such 

as satellites and drones. For example, 100 frames of 8-bit 

256×256 video contains (100 × 256 × 256 × 8) = 52,428,800 

bits of raw data. A video with an equivalent number of 

frames and the same resolution but in 16-bit format contains 

(100 × 256 × 256 × 16) = 104,857,600 bits, which doubles 

the memory requirements as compared to the 8-bit video. 

One common method to mitigate this increased resource 

requirement is to compress the raw data to a smaller size 

using existing video encoders, such as H.264 [1], MJPEG 

[2], or VP8 [3]. An encoder’s effectiveness is measured 

using the compression ratio (CR), which is the 

uncompressed data size divided by the compressed data 

size. Lossless encoders retain all existing raw data exactly 

when the compressed data is decoded, but retaining this 

information severely limits attainable CR. Lossy 

compression enables larger CRs, but the decoded data are 

not exactly the same as the encoded data. This loss can be 

measured using the Root Mean Square Error (RMSE), 

which is a common metric used to quantify data loss. Lower 

RMSE values represent higher decoded video quality (less 

data loss), with lossless compression achieving an RMSE of 

zero (the decoded data are identical to the original raw data). 

 

A major challenge in using existing encoders for high bit-

depths is that these encoders typically only support 8-bit 

video formats, and thus they are not amenable to high bit-

depth videos. Even though a few existing encoders support 

high bit-depth grayscale video (e.g., JPEG-LS [4], FFV1 

[5], JPEG2000 [6], FFVhuff [7]), an in-house analysis of 

these encoders showed low CR, ranging from 1.0 to 1.85. 

There are several potential solutions for improving the CR, 

including architecting new encoders. However, architecting 

new encoders can be an immense undertaking for a special-

purpose need, which may explain the limited availability of 

suitable encoders [8]. We propose a more practical solution 

that uses preprocessing methods to alter the video’s format, 

creating processed data that are more amenable to existing 

encoders. In this work, we propose and evaluate five video 

preprocessing methods to transform high bit-depth videos, 

making the processed data amenable to existing encoders. 

Our preprocessing methods include: filtering, region of 

interest (ROI), factoring, SuperFrame, and bit-stream 

splitting (BSS). These methods offer different tradeoffs 

between CR and RMSE to enable system designers to 
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choose an appropriate method based on application and 

system requirements [9]. 

Filtering is a preprocessing method that attempts to reduce 

the noise in the data, which reduces the video’s entropy. 

Entropy is a measure of the quantity of information 

contained in an image, where lower entropy results in a 

higher potential CR, and thus filtering can theoretically 

improve a video’s CR. We evaluated several noise-

reduction filtering algorithms, including Gaussian, Median, 

Average, and Wiener. Since filtering modifies the content of 

the video, filtering is inherently lossy, and thus the 

processed data already contains some loss in quality. 

ROI identifies the critical video-frame regions and maintains 

these regions’ qualities using lossless compression, while 

using lossy compression on the remainder of the video 

frame in order to isolate the data loss to non-critical data. 

This selective region compression achieves higher overall 

CR while maintaining the quality of the critical data and 

varying the quality of the non-critical data. 

Factoring reduces the bit-depth by attempting to remove 

only bits that provide little information with respect to the 

overall data quality. Factoring is similar to the quantization 

step in JPEG encoding [10]. 

SuperFrame is a method that converts a large stream of 

video frames into a single (supersized) frame, making the 

data more amenable to popular image compression 

algorithms, such as JPEG2000. Using SuperFrame enables 

compression of all pixel values within a single supersized 

frame, which transforms temporal redundancy into spatial 

redundancy and increases CR potential. 

BSS is a novel video preprocessing method that splits the 

video’s bits into smaller 8-bit partitions that can be 

compressed using existing 8-bit encoders (e.g., H.264, 

MJPEG, VP8). For example, a 16-bit video can be split into 

two separate 8-bit videos, each containing the same number 

of frames, where one partition contains the upper bytes of 

each frame and the other partition contains the lower bytes. 

We thoroughly evaluated each preprocessing method’s CR 

and RMSE for different video scene types. Since these 

requirements can be mission-specific, for evaluation and 

comparison purposes, in this paper we target an average CR 

of 10 or more with an RMSE of 15 or less. Using a 16-bit 

lossless encoder FFV1 as a baseline, our results show that 

filtering resulted in small CR improvements of 1.01× to 

1.04× with a large increase in RMSE. A simple quadrant-

based ROI method that identified one quarter of the frame 

as critical data increased the overall CR by 2.10×, with an 

RMSE of zero for the ROI quadrant (i.e., perfect data 

quality), but large increases in RMSE for the other 

quadrants. SuperFrame using lossless JPEG2000 resulted in 

CR increases of 1.63×. BSS resulted in CR increases of 

1.74× and 15.4× using lossless and lossy compression, 

respectively. Combining factoring and BSS resulted in a CR 

increase of 22.4× using lossy compression, with a small 

RMSE of less than 18.5. 

As aerospace missions demand higher bit-depth video, it is 

critical to improve data compression in order to be able to 

deliver video information efficiently. However, given the 

high data-integrity requirements of aerospace and defense 

applications, the compression methods used must meet 

critical CR and RMSE requirements for the mission. In this 

paper we present new methods, results, and tradeoff 

analyses with different preprocessing and video encoding 

methods, enabling designers to quickly evaluate and select 

an appropriate method given system constraints and 

application requirements. 

2. BACKGROUND AND METHODOLOGIES 

Given the disparity between expected and required data 

quality and between the level of information for consumer 

products (e.g., personal video camera, television data) and 

specialized space applications, vastly different video 

formats and processing methods may be required. In this 

section, we summarize these specialized requirements with 

respect to the high bit-depth video test set used in our 

evaluations, and the various metrics and tools used to 

compare and analyze the effectiveness of our proposed 

preprocessing methods. 

Evaluated Video Test Set 

For this study, we evaluate three different high bit-depth 

videos, provided by the Air Force Research Laboratory 

(AFRL) Space Vehicles Directorate, which are simulated, 

video data in Overhead Persistent Infrared (OPIR) imaging 

with 14-bit grayscale raw video in little endian format. 

Since the files are stored as raw video, even though the 

sensor data is recorded as 14-bit, each pixel value contains 

16 bits, with two zero bits padded automatically at the most 

significant bit position [11]. A special characteristic of these 

videos is that the videos are recorded at a high frame rate of 

greater than 100Hz, whereas a consumer video would 

typically be recorded at 30Hz or 60Hz. This high frame rate 

adds to the memory, storage, and bandwidth requirements. 

Figure 1 depicts a representative frame/scene from each of 

these three videos, showing various possible expected 

scenarios from space applications that are observing Earth 

terrain. The videos show different cloud cover variations, 

 
Figure 1: Representative OPIR frames/scenes from our 

simulated 14-bit video test set for varying cloud cover 

situations: (a) Cloud001, (b) Cloud002, and (c) NoCloud001 
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with Figures 1a (Cloud001) and 1b (Cloud002) showing 

different types of cloud cover, and Figure 1c (NoCloud001) 

with no cloud cover. Cloud001 is a more uniform scene, 

with most of the video containing a small range of gray 

levels. Cloud002 and NoCloud001 show more complexities 

in the video, with more drastic changes within certain 

portions of the frame. This range of complexities will 

impact the effectiveness of the video compression, and vary 

the achievable CR and RMSE of each video, based on our 

different preprocessing methods. 

Evaluation Metrics 

We use several metrics to measure the effectiveness of 

video compression and our proposed preprocessing 

methods. CR quantifies the reduction in data size, which is 

the uncompressed file size divided by the compressed file 

size: 

𝐶𝑅 =  
𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒
 (1) 

Higher CR values indicate a smaller compressed file size, 

which reduces memory, storage, and communication 

bandwidth requirements. 

RMSE is used to measure the quality of a video after 

compression, and calculates the difference in pixel values in 

the compressed file against the original pixel values from 

the raw, uncompressed file. RMSE is calculated as: 

𝑅𝑀𝑆𝐸 =

√
1

𝑊𝐻𝐿
∑ ∑ ∑ [𝑓′(𝑥, 𝑦, 𝑧) − 𝑓(𝑥, 𝑦, 𝑧)]𝐿−1

𝑧=0
2𝐻−1

𝑦=0
𝑊−1
𝑥=0      (2) 

where W and H are the width and height of the video frame, 

respectively, L is the number of frames in the video, 

𝑓′(𝑥, 𝑦, 𝑧) is the compressed video pixel value at the x,y 

position within the z-th frame, and 𝑓(𝑥, 𝑦, 𝑧) is the raw 

video pixel value. However, RMSE does not distinguish 

between loss of noise and loss of information and simply 

represents the error, unlike other common metrics such as 

Peak Signal to Noise Ratio (PSNR), which attempts to 

quantify the visual effects of data loss and may not make 

sense for analysis applications. 

Video can be compressed using either lossless or lossy 

compression. In lossless compression, the compressed file 

has an RMSE value of zero, meaning there are no changes 

in any of the pixel values (i.e., all data quality is retained). 

However, this zero RMSE requirement severely limits 

attainable CR. Lossy compression increases CR, but the 

tradeoff is reduced data quality. Lossy compression results 

in RMSE values greater than zero. 

Tools 

We used MATLAB as the primary tool to create and test our 

preprocessing methods. Filtering was performed using the 

imfilter MATLAB function, which allows the use of built-in 

filters, such as Average, Median, Gaussian, and Wiener. 

MATLAB was also used to create the scripts for factoring, 

SuperFrame, and BSS. For our video encoders, we used the 

open-source application FFMPEG [7] running on a 

Windows 7 computer. FFMPEG contains a large number of 

supported video encoders, some of which we analyze in this 

paper, including FFV1, FFVhuff, JPEG-LS, LJPEG, x264, 

and JPEG2000. 

3. CONVENTIONAL METHODS 

Due to the focus on consumer product demands, few video 

encoders support high bit-depth in video compression, and 

thus leave limited options. Using the FFMPEG tool, the 

only encoders that support high bit-depth and lossless video 

compression without modification are FFV1, FFVhuff, 

JPEG-LS, LJPEG, and JPEG2000. FFV1, FFVhuff, and 

LJPEG only provide lossless compression, but JPEG-LS 

and JPEG2000 also support lossy compression in addition to 

lossless.  
 

Figure 2 shows the CR results for our video test set using 

four of the five conventional lossless encoders for high bit-

depth video. LJPEG is not shown due to complications in 

the FFMPEG tool, which resulted in incorrectly encoded 

videos, and thus a non-lossless compressed file in our tests. 

The results show a common trend across all of the encoders 

with respect to CR. Cloud001 had the highest CR, while 

Cloud002 and NoCloud001 both had similar CRs less than 

Cloud001. These results are expected and correlate well 

with our initial assessment of the video content shown in 

Figure 1. Cloud001 has a more uniform scene, thus higher 

CR than the more complex scenes in Cloud002 and 

NoCloud001 is expected. 

Out of these four conventional encoders, FFV1 resulted in 

the highest CR and FFVhuff resulted in the lowest CR. In 

the best-case scenario, FFV1 achieved a CR of 1.85 with 

Cloud001, a CR of 1.48 with Cloud002, and a CR of 1.52 

with NoCloud001, with an average CR of 1.62. Since FFV1 

is the best conventional encoder, we designate FFV1 as our 

baseline for evaluating our proposed preprocessing methods. 

 
Figure 2: Baseline CR for each video using existing 16-bit 

encoders for lossless compressions. 
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4. PREPROCESSING METHODS  

Since, even in the best-case scenario, the highest achievable 

CR using any conventional encoder is 1.85, which is far 

from our general goal of 10, we propose several new 

preprocessing methods to improve CR. In this section, we 

describe each of our proposed preprocessing methods and 

evaluate the methods against our baseline CR (Section 3). 

Filtering 

Filtering is a method of reducing noise in a video, which in 

turn reduces the entropy of the video. Entropy is the average 

of the information contained in each individual frame of the 

video [12,13]. In theory, by reducing the entropy of the 

video using noise reduction filtering, CR is expected to 

increase [14].  

We evaluated several filters, such as Gaussian, Median, 

Average, and Wiener, however, the entropy of the video 

only reduced by a small amount and resulted in negligible 

CR improvements. Of these filters, Gaussian resulted in the 

lowest RMSE at kernel size of 5x5 and standard deviation 

of 0.50 pixels. Applying Gaussian to Cloud001 and 

compressing the resulting video using FFV1 only showed a 

1.01× improvement over the baseline (CR of 1.86) with an 

RMSE of 15. Even at an RMSE over 100, CR increased by 

only 1.04×. Given these results, we concluded that filtering 

does not provide appreciable CR improvement. 

ROI 

ROI is a method designed to compress the vital or critical 

region of the video using lossless compression, and 

compressing the remaining non-critical region using lossy 

compression. Potential savings using ROI depend on the 

size of the critical region, with smaller critical regions 

providing a larger potential increase in the video’s overall 

CR.  

Since ROI results are highly dependent on the specific 

application situation, our implementation assumed a 

moderately sized ROI by dividing the video into four 

quadrants. We arbitrarily selected the first (upper left) 

quadrant as the ROI for lossless compression. We used 

JPEGLS as the video encoder, since JPEG-LS has both 

lossless and lossy compression modes. The amount of loss 

allowed was set using a compression setting—a parameter 

called the quality factor—that ranges from 0 to 128. A 

quality factor of 0 provides lossless compression, and a 

quality factor between 1 and 128 varies the degree of loss. 

Higher quality factors (i.e., more loss) have a higher 

potential CR. 

Figure 3 shows the overall CR averaged over the video test 

set for our ROI method. The overall CR for a single video 

was calculated by summing the compressed size of each 

quadrant and comparing this total size to the original raw 

file size using Equation 1. The RMSE plotted is that of the 

lossy portion of the video. At our target RMSE of 15, CR 

increased by 1.81× (CR of 2.94) as compared to the 

baseline. Since the critical region is encoded with lossless 

compression, the target RMSE can be relaxed (i.e., 

increased). For example, at an RMSE of 50, CR increased 

by 2.06× (to a CR of 3.34) as compared to the baseline.  

Even though ROI showed a marked improvement in CR 

over filtering, in these tests, we manually designated the 

ROI as an arbitrary quadrant. In order to most effectively 

leverage ROI in a real world application, an automated 

method for selecting the ROI is required. This automation is 

application-dependent and is not within the scope of this 

paper. 

Factoring 

Factoring reduces the number of bits in the video before 

compression. Our factoring method divides the pixel value 

by a factor number 2n, where n represents the number of bits 

being reduced or removed. For example, factor numbers of 

2, 4, 8, 16, etc. will reduce the number of bits by 1, 2, 3, 4, 

etc. In our MATLAB implementation, the program also 

defaulted to rounding the output value to the closest value. 

Using our 14-bit video test set and a factoring number of 64 

would result in only 8 bits of the raw data being used in the 

compression, and a factoring number of 32 would use only 

9 bits. The original bit-width can be attained by multiplying 

the pixel values of the decompressed video file by the same 

factor used before compression. Obviously this method 

results in some loss of data in the least significant bits, but 

the tradeoff is potentially higher CR. 

We evaluated factoring using FFV1, since this lossless 

video encoder does not introduce additional RMSE, 

allowing us to evaluate just the RMSE introduced due to 

factoring. We varied the factor number from 1 to 64, using 

64 as the maximum factor number since this value produces 

an 8-bit video from the original 14-bit video, which is 

already a considerable loss of data.  

Figure 4 shows the CR and RMSE results for the video test 

set for varying factor numbers. Factoring achieved a CR as 

high as 4.43 for Cloud001, 2.84 for Cloud002, and 2.94 for 

NoCloud001, with an average CR of 3.40, which is a 2.10× 

increase over the baseline CR. RMSE values for factor 

 
Figure 3: CR and RMSE for ROI, averaged over the video 

test set using JPEG-LS, for varying quality factors 
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numbers of 2, 4, and 8 showed inconsistency, where the 

results did not match expected values. Factor numbers of 4 

and 8 should have resulted in different RMSE values, and a 

factor number of 2 should not have resulted in 0 RMSE. 

This outcome is due to some error in the way that the 

original simulated video test set was created, whereas all the 

pixel values were either equal to 0 or 2 modulo 8. The 

results also show that the RMSE introduced by factoring 

was constant across all videos, indicating that RMSE lost 

due to factoring is not scene-dependent when observing 

most natural scenes. Factoring attains a CR comparable to 

that of ROI but at a much lower overall RMSE.  

SuperFrame 

JPEG2000 is a popular image-compression algorithm for 

use in various domains, especially space applications. For 

instance, the Consultative Committee for Space Data 

Systems (CCSDS) recommends using JPEG2000 for video 

compression for applications in which the data are stored 

locally for transmission at a later time [15]. However, since 

JPEG2000 is for image compression, using JPEG2000 for 

video requires compressing each frame in the video 

individually, thus JPEG2000 cannot take advantage of 

redundancy in the temporal, or time, domain like other 

video encoders can typically leverage. 

SuperFrame is a method suggested by our sponsors (Alex 

Toussaint and Dr. Reed Weber at the AFRL Space Vehicles 

Directorate) to introduce more redundancy into the raw 

video data for improved JPEG2000 image compression. 

Figure 5 depicts the SuperFrame concept, where sequential 

video frames (Figure 5(a)) are rearranged into a single 

combined frame (Figure 5(b)). The figure depicts this 

concatenation using different shades of gray to show the 

video frame layout in the SuperFrame. Each horizontal line 

in a SuperFrame contains all of the pixels for a single video 

frame. For example, Cloud001 has a frame size of 256×256 

with 4,224 total frames. The combined SuperFrame would 

be a single frame of size 4224×65536. This SuperFrame can 

then be compressed using JPEG2000 as if the video is a 

normal (big) image. If an entire video produces a 

SuperFrame larger than JPEG2000 can process, multiple 

SuperFrames can be created, each no larger than the 

maximum size that JPEG2000 can compress. 

JPEG2000 supports both lossless and lossy compression, 

where the lossiness is varied by specifying a desired CR. 

Figures 6 and 7 depict the RMSE for the video test set with 

varying CR values, using JPEG2000 in lossy compression 

mode. Figure 6 shows the normal method for using 

JPEG2000 for video compression, where all frames are 

individually compressed. Figure 7 shows the SuperFrame 

method. At a CR of 20, SuperFrame had an RMSE of less 

than 20 for all of the videos, with an RMSE as low as 4.8 

for Cloud001. At the same CR, using the normal JPEG2000 

image compression method, the RMSE was as high as 150, 

with a best case RMSE of 80 for Cloud001. Results showed 

 
Figure 4: Factoring results with the video test set for 

varying factor numbers in terms of (a) CR and (b) RMSE  

 

Figure 5: SuperFrame concept: Sequential video frames (a) 

are reorganized into a single SuperFrame (b) for frame-based 

compression 

 

Figure 6: RMSE versus CR using the normal JPEG2000 

image compression method 

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 10 20

R
M

SE

CR

Cloud001 Cloud002 NoCloud001



 

 6 

that SuperFrame could significantly increase CR for some 

videos, such as Cloud001, which achieved a CR above 50, a 

30× increase over the baseline, with an RMSE value below 

our targeted maximum of 15. 

Using JPEG2000 in the lossless compression mode, 

SuperFrame resulted in a CR of 3.00 for Cloud001, 2.44 for 

Cloud002, and 2.49 for NoCloud001, with an average 1.63× 

improvement as compared to the baseline. These results 

show that it is possible to increase the lossless CR by using 

SuperFrame without sacrificing any data, unlike filtering, 

ROI, or factoring. Thus, SuperFrame is a more ideal method 

for applications requiring absolutely no data loss. 

Bit-Stream Splitting (BSS) 

Due to the fact that most consumer video encoders use 8-bit 

format, advancements in video compression techniques 

focus on 8-bit video, with popular encoders such as 

H.264/H.265 and VP8/VP91. Our novel method of BSS 

allows any 8-bit video encoder to be used with higher bit-

depth videos.  

Figure 8 represents the basic flow of compressing a high bit-

depth video using BSS. Even though BSS can be used for 

any bit-depth, we describe the concept using our 14-bit 

grayscale video test set (Section 2), which in raw file format 

uses 16-bits for each pixel. The video is split into two parts, 

resulting in two video files, one with the upper bytes and 

one with the lower bytes. Each resulting 8-bit video file can 

be compressed using any 8-bit video encoder, which could 

not have been used on the original 14-bit video. To obtain 

the original video, the two compressed files are 

decompressed and merged back into a single video file. 

Figure 9 shows the CR for various lossless encoders using 

BSS. The results show that x264 (an open-source 

 
1 Even though H.265 and VP9 reported support high bit-depth formats, at 
the time of testing, these implementations in FFMPEG were not functional. 

implementation of H.264) provided the best CR, achieving a 

CR as high as 3.40 for Cloud001, 2.45 for Cloud002, and 

2.60 for NoCloud001. With an average CR of 2.82, BSS 

increased the CR by 1.74× as compared to the baseline. BSS 

also outperformed SuperFrame in lossless compression. 

Splitting the bits also enables targeted lossy compression. 

Since the upper byte contains more relative information 

about the video data as compared to the lower byte, lossless 

compression can be applied to the upper byte and lossy 

compression to the lower byte.  

 

Figure 7: RMSE versus CR using a SuperFrame with 

JPEG2000 

 

Figure 8: BSS conceptual flow 

 

Figure 9: CR from lossless compression with BSS 
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Figure 10 shows the CR and RMSE using x264 with BSS, 

averaged over the video test set. Even though there are other 

8-bit encoders that support lossy compression, such as 

VP8/VP9, the CCSDS recommends using MPEG-4 part 10, 

an H.264 implementation, for certain space video 

applications that use 8-bit video format [15]. The results in 

the figure show that x264 with BSS achieved an average CR 

of 25 at our target RMSE of 15, a 15.4× improvement as 

compared to the baseline. 

5. COMBINATION OF METHODS 

Given the individual evaluation of our five preprocessing 

methods, the results showed that factoring, SuperFrame, and 

BSS achieved the best CR improvement over the baseline 

using both lossless and lossy compression. Since these 

methods do not have to be orthogonal, we evaluated several 

combinations of these methods to achieve even higher CR. 

BSS and Factoring 

Results showed that, out of all our preprocessing methods, 

BSS using x264 achieved the best lossless CR, and factoring 

provided good lossy CR with acceptable RMSE (Section 4). 

Thus, we evaluated the combination of BSS and factoring 

by applying factoring to the raw video test set before 

applying BSS with x264 lossless compression. 

Figure 11 shows the CR and RMSE results for the video test 

set using this combination of BSS and factoring, which 

shows similar constant RMSE trends as did the factoring 

results in Figure 4(b) across different videos. This similarity 

is expected, since we are using lossless compression with 

BSS, which does not introduce additional data loss beyond 

the data loss incurred by factoring. However, this 

combination resulted in greater CR, as depicted in Figure 

11(a). In the best-case scenario, Cloud001 has a CR of 36.3 

with an RMSE of 18.5, an 8.19× improvement in CR as 

compared to factoring alone. On average, using this 

combination increased CR by 22.4×, with an RMSE of only 

18.5, which is a CR more than double our targeted CR of 10 

while keeping the RMSE close to 15. 

BSS and SuperFrame 

Since SuperFrame showed good improvement in both 

lossless and lossy CR, we combined BSS and SuperFrame 

to achieve even higher CRs. Figure 12 compares the CR and 

RMSE results from the video test set using BSS separately, 

SuperFrame separately, the combination of BSS and 

factoring, and the combination of BSS and SuperFrame. 

The results show that the combination of BSS and 

SuperFrame has a higher RMSE at CR less than 20 

compared to just using BSS and SuperFrame separately, and 

the combination of BSS and factoring. However, at higher 

CR values, the BSS and SuperFrame combination had lower 

RMSE than BSS alone. In the case of Cloud001 (Figure 

12(a)), the BSS and SuperFrame combination showed 

higher RMSE than using SuperFrame alone. Figures 12(b) 

and 12(c), however, show that for Cloud002 and 

NoCloud001 the combination of BSS and SuperFrame had 

the lowest RMSE across these combinations. These results 

indicate that CR, and thus best method in combination, is 

dependent on the particular video scenes. 

Since our targeted RMSE is 15 or lower, Figure 13 depicts a 

closer look at the achievable CR while maintaining an 

RMSE in this range. This figure presents the same results as 

in Figure 12, but with the RMSE axis limited to 20 to more 

 

Figure 10: Lossy CR and RMSE using x264 with BSS. 

Results are averaged over the video test set 

 

Figure 11: (a) CR and (b) RMSE results when combining 

factoring and lossless BSS using x264 on the video test set 

with varying factor values  
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clearly evaluate trends. As observed, the combination of 

BSS and SuperFrame does not perform as well as just using 

either BSS or SuperFrame separately. Figure 13 also shows 

that SuperFrame achieved the highest CR while remaining 

below our target value of RMSE for the entire video test set, 

even though trends in Figure 12 indicated that BSS and 

SuperFrame in combination performed better than 

SuperFrame separately for CRs higher than 20. 

6. CONCLUSIONS 

The demand for high bit-depth video is ever increasing for 

critical and sensitive applications, which places increased 

demand on system resources. Since most conventional video 

encoders do not support these formats, this paper presents 

novel preprocessing methods to address the need for higher 

compression ratios (CRs). Our results and analysis reveal 

that the largest CR improvements for high bit-depth video 

can be achieved using several of our proposed preprocessing 

methods: SuperFrame, bit-stream splitting (BSS), and 

factoring, or a combination of these. Since large CR 

increases the tradeoff in loss of data quality, our analysis 

enables system designers to select the most appropriate 

preprocessing method, or combination of methods, based on 

the specific application requirements. Our preprocessing 

methods enable new and more complex algorithms in 

resource-constrained environments. For example, since BSS 

transforms the data to a format suitable for any existing 8-

bit encoder, this method enables a designer to consider a 

large range of highly developed consumer-oriented encoders 

instead of relying on a more specialized, application-

specific encoder. 

Future work includes measuring the resource cost needed to 

run our proposed preprocessing methods, and the additional 

processing overhead that these methods demand upon the 

compression speed. These overheads are another critical 

issue that must be considered by system designers when 

selecting preprocessing method(s), since compression for a 

given mission and high bit-depth video leads to 

requirements in compression rate and quality as well as 

compression speed.  
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             (a)       (b)            (c) 

Figure 12: Comparison between BSS and SuperFrame applied separately versus combined BSS with factoring and BSS with 

SuperFrame on the video test set: (a) Cloud001, (b) Cloud002, (c) NoCloud001 

 
                (a)        (b)            (c) 

Figure 13: A more detailed comparison (zoomed in view) of results in lower left of Figure 12 on the video test set:  

(a) Cloud001, (b) Cloud002, and (c) NoCloud001 



 

 9 

REFERENCES  

[1]  ITU-T H.264, February 2014.  

[2]  ITU-T Recommendation T.81, The International 

Telegraph and Telephone Consultative Committee, 

September, 1992.  

[3]  Feller, C.; Wuenschmann, J.; Roll, T.; Rothermel, A.; 

Inst. of Microelectron., Ulm Univ., Ulm, Germany, 

“The VP8 video codec – overview and comparison to 

H.264/AVC”, Consumer Electronics – Berlin (ICCE-

Berlin), 2011 IEEE International Conference, Berlin, 

6-8 Sept. 2011, 57-61.  

[4]  Information Technology-Lossless and near-lossless 

compression of continuous-tone images-Baseline. 

International Telecommunication Union (ITU-T 

Recommendation T.87). ISO/IEC 14495-1, 1998. 

[5]  FFV1 Video Codec Specification [Online]. Available: 

http://ffmpeg.org/~michael/ffv1.html  

[6]  ISO/IEC 15 441-1: Information Technology-JPEG 

2000 Image Coding System-Part 1: Core Coding 

System, 2000.  

[7]  FFMPEG [Online]. Available: http://www.ffmpeg.org  

[8]  S. Yu, Q. Qiao, L. Luo, and Y. Yang, “Increasing 

compression ratio of low complexity compressive 

sensing video encoder with application-aware 

configurable mechanism,” 2014 International 

Conference on Communication and Signal 

Processing, 2014. 

[9] Y. Bao, B. Stukken, J. Stals, C. Chen and L. Claesen, 

“Quantitative comparison of lossless video 

compression for multi-camera stereo and view 

interpolation applications,” 2015 IEEE 13th 

International New Circuits and Systems Conference 

(NEWCAS), 2015. 

[10] W. Pennebaker and J. Mitchell, JPEG still image data 

compression standard. New York: Van Nostrand 

Reinhold, 1993. 

[11] T. Ito, Y. Bandoh, T. Seishi and H. Jozawa, “A coding 

method for high bit-depth images based on optimized 

bit-depth transform,” 2010 IEEE International 

Conference on Image Processing, 2010. 

[12] H. Bai, A. Wang and A. Abraham, “Entropy analysis 

on multiple description video coding based on pre- 

and post-processing,” 2012 12th International 

Conference on Hybrid Intelligent Systems (HIS), 

2012. 

[13] P. Symes and P. Symes, Digital video compression. 

New York: McGraw-Hill, 2004. 

[14] A. Langi and W. Kinsner, “Compression of aerial 

ortho images based on image denoising,” Proceedings 

of Data Compression Conference – DCC ’96, 1996. 

[15] CCSDS 706.1-G-1, Motion Imagery and Applications, 

CCSDS, 2010. 

BIOGRAPHY 

An Ho is an M.S. student in ECE 

at the University of Florida. He 

received his B.S. degree in EE 

from the University of Florida. He 

is a research assistant in the on-

board processing group in the 

NSF CHREC Center at Florida.  

 

 

Alan D. George is Professor of 

ECE at the University of Florida, 

where he serves as Director of the 

NSF Center for High-

performance Reconfigurable 

Computing known as CHREC. He 

received the B.S. degree in CS 

and M.S. in ECE from the 

University of Central Florida, 

and the Ph.D. in CS from the 

Florida State University. Dr. 

George's research interests focus upon high-performance 

architectures, networks, systems, services, and 

applications for reconfigurable, parallel, distributed, and 

fault-tolerant computing. He is a Fellow of the IEEE. 

 
Ann Gordon-Ross received her 

B.S. and Ph.D. degrees in 

Computer Science and 

Engineering from the University 

of California, Riverside (USA) in 

2000 and 2007, respectively. She 

is currently an Associate 

Professor of ECE at the 

University of Florida and is a 

member of the NSF Center for High-Performance 

Reconfigurable Computing (CHREC). Her research 

interests include embedded systems, computer 

architecture, low-power design, reconfigurable 

computing, dynamic optimizations, hardware design, 

real-time systems, and multi-core platforms. 

 

 


