Session 8: Devices and Security

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

Impact of Soft Errors on Large-Scale FPGA Cloud Computing

Andrew M. Keller and Michael J. Wirthlin
NSF Center for Space, High-Performance, and Resilient Computing (SHREC)
Deptartment of Electrical and Computer Engineering
Brigham Young University
Provo, Utah
andrewmkeller@byu.edu,wirthlin@byu.edu

ABSTRACT

FPGAs are being used in large numbers within cloud computing
to provide high-performance, low-power alternatives to more tra-
ditional computing structures. While FPGAs provide a number of
important benefits to cloud computing environments, they are sus-
ceptible to radiation-induced soft errors, which can lead to silent
data corruption or system instability. Although soft errors within a
single FPGA occur infrequently, soft errors in large-scale FPGAs sys-
tems can occur at a relatively high rate. This paper investigates the
failure rate of several FPGA applications running within an FPGA
cloud computing node by performing fault injection experiments to
determine the susceptibility of these applications to soft-errors. The
results from these experiments suggest that silent data corruption
will occur every few hours within a 100,000 node FPGA system
and that such a system can only maintain high-levels of reliability
for short periods of operation. These results suggest that soft-error
detection and mitigation techniques may be needed in large-scale
FPGA systems.

CCS CONCEPTS

- Computer systems organization — Reliability; Availability;
+ Hardware — Fault models and test metrics; System-level
fault tolerance; Board- and system-level test; Error detection and
error correction; Failure prediction; Failure recovery, maintenance and
self-repair; Redundancy.

KEYWORDS

FPGA cloud computing; FPGA data centers; soft error rate, SER;
single event upset, SEU; architectural vulnerability factor, AVF; fault
injection; critical bit; reliability; recovery; Intel FPGA; mission time

ACM Reference Format:

Andrew M. Keller and Michael J. Wirthlin. 2019. Impact of Soft Errors on
Large-Scale FPGA Cloud Computing. In The 2019 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA °19), February 24—
26, 2019, Seaside, CA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3289602.3293911

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FPGA 19, February 24-26, 2019, Seaside, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6137-8/19/02...$15.00
https://doi.org/10.1145/3289602.3293911

272

1 INTRODUCTION

Field programmable gate arrays (FPGAs) are increasingly being
used in cloud computing environments to perform application-
specific computation. FPGAs offer a configurable fabric that can be
used to accelerate a variety of important applications. In some ap-
plications, FPGAs provide higher performance and power efficiency
than super-scalar CPUs [27] or GPUs [15]. The large number of
nodes found within modern cloud computing suggests that many
FPGAs will be needed in FPGA-based cloud computing systems.

With large-scale deployment of any technology, there is in-
creased risk of a single node failing, which can jeopardized the
integrity or stability of the overall system. Although the failure rate
for a single node may be very small, the failure rate of large-scale
systems increases linearly with the number of devices. This scaling
has been seen in DRAM [22], microprocessors [14], and FPGAs [19].
An important failure mechanism for FPGAs is caused by radiation-
induced soft errors. These errors do not cause permanent damage
to the device, but they can modify the internal state or memory of
the system [1]. Since FPGAs contain a large amount of memory to
configure routing, logic, and other aspects of a design, upsets within
the memory of an FPGA can corrupt more than just the data stored
in sequential logic elements — such upsets can change the behavior
of the circuit configured on the device. The effects of soft errors
on single FPGA systems are well understood [7] and methods for
addressing these effects have been developed for FPGAs operating
in harsh radiation environments such as space.

This paper studies the impact that soft errors have on large-
scale FPGA systems within cloud computing. Fault injection is
performed on an FPGA system that is tightly coupled with a CPU
host. The evaluated device is an Intel Stratix V FPGA, which has
been used in cloud-scale accelerated architectures [6]. Through
fault injection, the soft error rates of several data-center-like FPGA
designs are estimated. Collected data is used to appropriately scale
soft error rates to a realistic large-scale FPGA system. Silent data
corruption (SDC) is identified as the dominant failure mechanism.
SEU detection and recovery approaches are discussed. The most
vulnerable design, Mandelbrot, demonstrated a 11.3% vulnerability
to soft errors. Running this application, a hundred-thousand node
system operating at a high altitude in Denver, Colorado, would
experience an SDC every 3.75 hours. Without any methods to detect
and address soft errors, such a system could only operate for two
minutes with a 99% probability of no SDC.

2 FPGAS IN THE CLOUD

FPGAs are being used in cloud computing because of their flexibility,
performance, and energy efficiency. Unlike CPUs and GPUs, FPGA

https://doi.org/10.1145/3289602.3293911
https://doi.org/10.1145/3289602.3293911
https://doi.org/10.1145/3289602.3293911

Session 8: Devices and Security

resources can be custom configured for a specific target application.
As aresult, applications running on an FPGA can make better use of
resources to exploit more parallelism, yielding higher performance
and better energy efficiency. In [15], the Intel Stratix 10 FPGA is
shown to provide 60% higher performance at 2.3x better energy
efficiency (i.e., performance per watt) than the Titan X Pascal GPU
for a deep neural network application. Using FPGAs in data centers
makes these benefits available to a wide variety of applications.

FPGAs can accelerate many high performance computing (HPC)
applications. In science, business, and everyday living, applications
exist that require HPC. In [3], several Intel Stratix V FPGAs are used
to accelerate DNA sequencing — an application in Genomics [21].
In [25], financial applications are accelerated using FPGAs. In [8],
Microsoft accelerated the serving of deep neural networks for real-
time artificial intelligence on Intel Stratix 10 FPGAs. Many other
cloud-computing applications are being accelerated using FPGAs.

Several companies are actively deploying large-scale FPGA sys-
tems. Microsoft entered the FPGAs-in-data-center scene early with
their launch of Catapult in 2014. They revamped their architecture
in 2016, at which point they had 50,000 Stratix V GS D5 FPGAs
deployed in their test system [6]. As of August 2017, Microsoft
has deployed hundreds of thousands of FPGAs in their data cen-
ters [11]. Amazon Web Services (AWS) followed suit with their
announcement of FPGA cloud instances in November 2016, which
became generally available in April of 2017. As of June 2018, FPGA
instances are now available from four different ASW regions-US
East (N. Virginia), US West (Oregon), EU (Ireland), and AWS Gov-
Cloud (US). They offer instances with up to eight Xilinx Virtex
UltraScale Plus FPGAs and currently partner with sixteen compa-
nies to provide cutting edge FPGA applications and services. Other
companies, such as Baidu, Nimbix, and Micron, are also involved
in using FPGAs for cloud computing. It is likely that FPGAs will
continue to be used in data centers for cloud computing and that
the number of deployed FPGAs will continue to increase [10].

FPGAs in data centers are typically reprogrammable SRAM-
based FPGAs closely coupled with a CPU host as depicted in Fig-
ure 1. SRAM-based FPGAs use static volatile memory to store device
configuration, making it possible to reprogram the device an un-
limited number of times. The FPGA and host are usually connected
with a high bandwidth interface such as PCle. Large memory stor-
age with DRAM is often available for acceleration tasks and is
shared between the FPGA and processor to facilitate communi-
cation between the FPGA and processor. Multiple FPGAs can be
connected to the same host or be networked together as part of an
advanced acceleration architecture [6]. Some FPGA resources are
dedicated to external interfaces, but most are made available to the
main acceleration task, often referred to as the kernel or role.

To gather soft error sensitivity data, a single node FPGA system,
similar to that shown in Figure 1, will be used for the experiments
in this paper. The example node consists of a single host and a
single FPGA accelerator board. The host is a Dell Precision T7510
server, equipt with two Intel Xeon E5-2609 processors and 16 GB of
ECC-protected RAM, operating Window 10 Professional. A Terrasic
DE5-net FPGA accelerator board with the Intel Stratix V GX A7
FPGA and 4 GB of RAM is connected to the host via a PCle 8%
connection. FPGA application designs are implemented on this node
using OpenCL and a Terrasic provided board support package.

273

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

FPGA

Acceleration Task Shared

CPU DRAM
‘ PCle DDR ‘
Controller Controller

Figure 1: Typical FPGA Data Center Node

Host

Table 1: Neutron SER for 28-nm FPGAs

Device Stratix V GX A7 | Kintex 7 325T
CRAM FIT/Mbit 63 74 + 18%
CRAM Bits ~99,000,000 ~73,000,000
CRAM FIT/Device 6,200 5,400
CRAM MTTU NYC 18.3 years 21.2 years

3 SOFT ERRORS IN FPGAS

Any observable change in a microelectronic device caused by a
single energetic particle strike is known as a single event effect or
SEE [1]. SEEs in terrestrial environments are primarily caused by
high-energy neutrons, thermal neutrons, and alpha particles [5].
The most common SEE in FPGAs are single event upsets (SEUs)
that cause flip-flops and other state elements to change their value.
Although non-destructive, SEUs can have a significant effect on the
operation of an FPGA design and the data it produces [28].

3.1 Soft Error Rates

The soft error rate, or the rate at which soft errors occur, is often
measured in terms of failures in time (FIT) and mean time to failure
(MTTF). FIT is defined as the average number of failures that occur
within a billion hours of operation [1]. MTTF is the inverse of FIT
scaled to a unit of time such as years; 1000 FIT roughly corresponds
to a 100 year MTTF. Soft error rates for large memory compo-
nents are often reported in terms of FIT per megabit, (i.e., 10°), or
FIT/Mbit. Neutron FIT rates are typically normalized to the amount
of radiation present outdoors in New York City (NYC) at sea level
during average solar activity. In these conditions, approximately
13 high-energy, (i.e., greater than 10 MeV), neutrons pass through
a square centimeter of area every hour (13 cm™2h™1).

The raw terrestrial neutron FIT rates for two different 28-nm
SRAM-based FPGAs are shown in Table 1. These devices contain
large amounts of configuration memory or CRAM. For each de-
vice, the raw CRAM FIT rate per megabit is shown. CRAM FIT
rate estimates for the Intel Stratix V and the Xilinx Kintex 7 come
from [13] and [29] respectively; the number of CRAM bits are taken
from vendor tool reports. Since both FPGAs are based on 28-nm
technology, their estimated FIT rates are similar. The mean time
between a single SEU occurring in a single Stratix V is 18 years.

The mean time to upset of a CRAM bit in a multiple FPGA system
can be computed by dividing the mean time to upset (MTTU) of a
single FPGA by the number of FPGAs in the system. The MTTU
of a CRAM for different sized systems using the Intel Stratix V GX
A7 FPGA is shown in Table 2. With one-hundred thousand FPGAs
deployed, an upset occurs on average once every one and a half

Session 8: Devices and Security

Table 2: Stratix V GX A7 Mean Time to Upset at NYC SER

FPGAs || Years | Days | Hours | Min. | Sec. || Total
(Sec.)

1 18 127 15 28 27 6E+8

10 1 304 23 8 50 6E+7

100 67 0 30 53 6E+6

1,000 6 16 51 5 6E+5
10,000 16 5 6 6E+4
100,000 1 36 30 6E+3
1,000,000 9 39 6E+2
10,000,000 57 6E+1

Table 3: Neutron flux at various locations

Location Elevation | Relative Neutron Flux
Seattle, WA 160 ft 1.05
Moscow, Russia 490 ft 1.14
Chicago, IL 590 ft 1.19
Denver, CO 5280 ft 3.76
Los Alamos Natl. Lab. 7380 ft 5.60
Leadville, CO 10170 ft 10.79
White Mtn. Res. Sta. 12500 ft 15.07

hours. This example shows that as the number of deployed FPGAs
reach cloud-scale, the rate of upsets occurring in the entire system
increases linearly with the size of the system.

Location also plays an important role in the rate of upsets. Higher
altitudes experience higher upset rates than New York City sea level.
For example, systems deployed at White Mountain Research Center
in the USA receive 15X the reference amount or a neutron flux of
approximately 195 cm™2h~! [1]. Several factors influence neutron
flux including geomagnetic cutoff, solar activity, and atmospheric
depth or elevation. Elevation is the most important parameter for
determining terrestrial neutron flux. Table 3 shows the neutron flux
measured at various locations.

An example of SER scaling based on location is found in the
SEU data mentioned in [6], which reports one SEU in FPGA con-
figuration logic every 1025 machine days, (i.e., for a single FPGA
instance). The Stratix V GS D5 FPGA used in [6] has approximately
79 million CRAM bits based on the critical bits report generated
by vendor tools. Using the 63 FIT/Mbit CRAM upset rate from [13]
scaled to the number of CRAM bits in the device gives an entire
device SEU rate of 5000 FIT at NYC sea level. This translates to 1
upset every 8333 machine days, suggesting that the location of their
data center is somewhere with a neutron flux that is approximately
8x greater than NYC, (i.e., 8333 divided by 1025). As seen in Table 3,
this level of neutron flux scaling is feasible based on location. Thus,
location deployment can have considerable impact on the upset
rate of deployed FPGAs.

3.2 Effect of SEUs on FPGA Designs

SEUs in SRAM-based FPGAs corrupt values of memory associated
with device configuration and active design state. CRAM bits enable
routes, set look-up table (LUT) equations, and adjust the behavior

274

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

Table 4: Breakdown of State in a Stratix V GX A7 FPGA

Type ‘ Bits | Percentage
CRAM 91,170,156 60%
BRAM (M20K) 52,428,800 34%
LUTRAM (MLAB) | 7,511,040 5%
Flip-Flop 938,880 1%

of circuit components. Some CRAM bit may be associated with
device wide behavior. Active design state and user-memory values
are stored in non-CRAM bits. These bits include registers, (i.e., flip-
flops), distributed memories, (i.e., LUTRAMs), block memories, (i.e.,
BRAMs), and control registers for specialized IP, like digital signal
processing blocks (DSPs) or high-speed transceivers. Values stored
in non-CRAM bits can be altered during run time whereas CRAM
bits do not typically change once initialized.

Corrupting CRAM bits within an FPGA can cause an operating
design to operate differently than expected causing a variety of
design failures [28]. Upsets in CRAM can disconnect routes, short
routes together, change timing characteristics, invalidate LUT equa-
tions, and disturb general circuit operation. They can also indirectly
corrupt values in user-memory by causing incorrect values to be
stored or by preventing correct values from being saved in memory
(e.g., stuck clock enable signal). When SEUs occur in user-memory,
bits, counters, state machines, pipelines and other sequential logic
elements take on incorrect values, which can be detrimental.

The state elements within an SRAM-based FPGA are dominated
by CRAM bits making CRAM bits the primary concern for soft
errors. The composition of known internal state subject to radiation-
induced upsets in an Intel Stratix V GX A7 FPGA is shown in
Table 4. CRAM bits make up 60% of all known internal state in
this device. Although block memories make up an additional 34%
of the known internal state, they can be protected from radiation
induced single-event effects with error correction codes (ECC).
Upsets in CRAM bits, however, immediately affect the operation
of the underlying circuit. Even if such upsets are repaired at a
later time, they introduce operational behaviors that may affect
computations performed in the FPGA.

The number of CRAM bits listed in Table 4 exceeds that of LU-
TRAM and flip-flop bits by a factor of ten, making upsets in the
smaller population much less likely. When a LUTRAM is used for
read-only logic, its bits are counted as a CRAM bits. Although
upsets in non-CRAM bits, (e.g., bits in flip-flops, M20Ks, MLABs),
are less likely, they should not be disregarded; these bits play an
important role and can cause disruptive behavior if upset.

3.3 Architectural Vulnerability Factor

Not all upsets in CRAM will affect the functionality of a design.
Upsets in bits that are unassociated with the resources used by
an active design should not disrupt the design behavior, (e.g., a
bit in a LUT that is not used by an active design). Upsets in bits
that are associated with resources used by a design may alter the
underlying circuit, but the effects of the upset on the design may
be hidden by error masking. Masking occurs when timing, logic, or
design functionality prevent SEUs from causing failure. Different
FPGA designs operating on the same device have different soft

Session 8: Devices and Security

Table 5: Benchmark Design Resource Utilization

Design Total ALMs Routing
FD3D 190,612 (81.21%) 30.50%
Mandelbrot 173,755 (74.03%) 29.40%
Channelizer 145,180 (61.85%) 23.40%
Matrix Multiply 135,405 (57.69%) | 28.40%
FFT1D 129,767 (55.29%) 20.80%
FFT2D 121,015 (51.56%) 22.20%
JPEG Decoder 95,250 (40.58%) 17.70%
Compute Score 94,575 (40.29%) | 22.10%
Boardtest 57,547 (24.52%) 11.90%
Video Downscaling | 50,914 (21.69%) | 10.80%
Vector Op 49,503 (21.09%) 9.90%
Vector Add 49,039 (20.89%) | 9.70%
Sobel 48,573 (20.69%) | 9.20%
Hello World 46,329 (19.74%) 8.60%

error sensitivities with varying responses to soft errors. Generally
speaking, designs that use more resources tend to be more sensitive
to soft errors than designs that use fewer resources.

The benchmark designs used in this paper all utilize a different
amount of FPGA resources and we expect the SEU sensitivity of
each design to vary based on their utilization. The resource utiliza-
tion of these designs are listed in Table 5. Design are listed in order
of highest utilization to lowest utilization based on the number of
adaptive logic modules (ALMs) that are used by the design. There
are 234,720 ALMs in the Stratix V GX A7 and the device utilization
ranges from 20% for the Hello World design to 81% for the FD3D
design. Routing influences the overall resource utilization but does
not directly contribute to total ALM utilization.

Vendors provide tools to classify bits as associated or unassoci-
ated with resources used by the active design. Intel Quartus Prime
calls associated bits critical bits and allows the users to tag specific
hierarchical modules as separate regions, meaning users could ex-
clude portions of the design from tagging if so desired. The number
of critical bits estimated by the tools for each of the benchmark
designs is summarized in Table 6. Two numbers are given for each
design: the injectable bits and the total critical bits. The number
of injectable bits represents the number of CRAM bits that can be
artificially upset through fault injection. This number varies from
design to design since some LUTs are used as user-memories and
cannot have faults injected into them. The critical bits percentage is
also shown in parentheses. As expected, the percent of the CRAM
bits that are critical varies significantly from design to design and
corresponds to the resource utilization of the design.

Many critical bits that are used by a design will not cause func-
tional failure if upset. The effect of some CRAM upsets may be
masked by the timing, logic, and the current state of the design [24].
A soft error occurring too late in a clock cycle to be latched into
memory, or an upset in a register whose value will be over written
before it is used are examples of temporal masking. Downstream
logic that prevents the errors induced by an upset from propagating
is an example of logical masking. An upset in a portion of the design
that is unused, like test logic, is an example of functional masking.

275

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

Table 6: Critical Bits

Design Injectable Total Critical
FD3D 98,502,636 | 69,740,486 (70.8%)
Mandelbrot 98,029,036 | 66,122,603 (67.5%)
Channelizer 98,534,636 | 62,673,556 (63.6%)
Matrix Multiply 98,573,036 | 58,774,590 (59.6%)
FFT1D 98,514,796 | 57,182,508 (58.0%)
FFT2D 98,439,276 | 56,797,420 (57.7%)
JPEG Decoder 98,386,796 | 41,360,019 (42.0%)
Compute Score 98,394,476 | 44,450,948 (45.2%)
Boardtest 98,578,156 | 24,009,160 (24.4%)
Video Downscaling | 98,587,116 | 20,934,957 (21.2%)
Vector Op 98,549,996 | 19,589,044 (19.9%)
Vector Add 98,587,116 | 19,838,814 (20.1%)
Sobel Filter 98,597,996 | 19,067,514 (19.3%)
Hello World 98,603,107 | 18,132,374 (18.4%)

Because some upsets in CRAM have no effect on the overall
functionality of a design, the raw SEU FIT rate of an FPGA device
overestimates the soft error rate of an actual FPGA application. The
architectural vulnerability factor or AVF [14] is a parameter that is
often used to scale the raw soft error rate by an application-specific
sensitivity. The AVF is defined as the probability that a CRAM fault
will cause a failure in the application design. The overall failure
rate is the product of the AVF and the raw SEU soft error rate.

To determine the overall failure rate of specific FPGA accelerator
designs, the AVF for the FPGA circuit needs to be estimated. The
AVF can be estimated through fault simulation, fault injection, or
radiation testing. Fault injection emulates the occurrence of an SEU
by altering values in CRAM bits during runtime [18] and is a com-
mon approach for estimating overall failure rate. AVF is estimated
in fault injection by taking the ratio of the number of faults that
cause design failures with the total number of faults injected into
the design. Radiation testing accelerates the occurrence of SEUs by
exposing the device to greatly increased levels of radiation [17].

3.4 System Failure Modes

SEUs that cause failure can trigger a variety of system failure modes.
Broadly classified, failures observed during fault injection exper-
iments of this paper fall into one of three main categories: host
unresponsive, FPGA unavailable, and silent data corruption. These
are likely the failure modes that would be seen in an FPGA cloud
computing platform. All failure modes observed in the experiments
of this paper could be resolved by repairing the fault, reprogram-
ming the FPGA, or power cycling the system. No permanent damage
was observed during the fault injection experiments of this paper.

3.4.1 Host Unresponsive. Host unresponsive failures occur when
an SEU in the FPGA causes system instability in the host. Instability
includes lack of network response from the host, host unresponsive-
ness to keyboard and mouse input, and crashes including abrupt
power failure. This instability may stem from issues in the driver
or hardware, but the underlying causes are unknown. In the ex-
periments of this paper, host unresponsive failures were primarily
observed as a loss of remote connection from the test operator to

Session 8: Devices and Security

the host (see Figure 2). This failure mode is relatively easy to detect
and can be resolved by rebooting the system.

3.4.2 FPGA Unavailable. Any SEU that makes it so that the host
can not connect to or initialize the FPGA is considered an FPGA
unavailable failure. This failure mode manifested itself in many
different forms during the fault injection experiments performed
during this work. These behaviors include the host not being able
to find any FPGAs on the system, not being able to open the target
FPGA, PCle link errors, reading the incorrect kernel or hardware
ID, and not being able to initialize the clock, etc. Any behavior
that prevents the host-application from initializing the kernel with-
out reprogramming the FPGA is considered an FPGA unavailable
failure. Like host unavailable, this failure mode is easy to detect.
Recovering from this behavior mainly involves reprogramming the
FPGA, but recovering may sometimes require a power cycle.

3.4.3 Silent data corruption (SDC). The most challenging behavior
is when an upset causes the FPGA to return incorrect data. In most
cases, this data corruption is not detectable by the application and
passes as correct data. This event is called silent data corruption or
SDC and is the most common failure mode. The severity of SDCs
vary from application to application. For some applications, SDCs
are not a problem because the returned data is transient and can
afford being incorrect, (e.g., web-search results); in other applica-
tions, SDC caries severe consequences, (e.g., SQL database commit).
SDC can originate from soft errors in several places throughout
a design. Errors in the interfaces between the FPGA and host or
DRAM could instill SDC during read and write operations. This was
observed in the Boardtest application when 4 GB of randomly gen-
erated data was transfered to and from DRAM through the FPGA.
SDC could also occur from upsets deep inside the logic of a target
application. SDC failure modes were caught in the fault injection
experiments by comparing the FPGA results against golden result
test vectors stored on the host. In practice, SDCs are not detectable
by the system.

4 FAULT INJECTION EXPERIMENTS

Fault injection is a common way of emulating soft errors to observe
soft error system response [18]. In the experiments of this paper, a
random fault injection campaign is used. Faults to inject are selected
at random for two purposes. First, this mode of injecting faults
better models the behavior of SEUs in deployed environments or at
an accelerated radiation test. Second, collecting random samples
models population sampling and makes it possible to statistically
estimate the overall SEU sensitivity of a design under test. Using
random faults to estimate overall sensitivity is known as statistical
fault injection (SFI) [20]. SFI provides a good estimate of the overall
sensitivity of a target device given sufficient samples. The more
samples that are collected, the tighter confidence intervals will be.

Confidence intervals in these experiments are calculated using
the Clopper-Pearson binomial proportions confidence interval [9].
Data collected in these fault injection experiments are presented as
percentages of sensitivity, or AVF, bounded by a proper confidence
interval. The data claims no absolutes but rather a 95% confidence
bound within a certain interval, meaning that the true sensitivity
lies within the interval with a 95% confidence. To achieve reasonably

276

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

tight confidence intervals, many thousands of faults were injected
into each design. Confidence intervals are such that the overall
confidence interval, (i.e., upper bound minus the lower bound), of
each experiment falls with 10% of the estimated value.

The goals of the fault injection experiments summarized in this
paper are to record system response behavior to configuration
upsets, quantify the sensitivity of a design to upset-induced failure,
and discuss the benefits and drawbacks of various SEU response
approaches. This information is then used to better understand
the impact of SEUs on a much broader scale for large-scale FPGA
deployments. As such, several benchmarks running on an example
node are tested using a fault injection framework. The framework
is designed to iteratively inject a fault, execute a test application
and record system response. This flow is applied to all benchmark
designs until sufficient data is collect. The following sections detail
the benchmark designs, and fault injection framework used to
collect the data needed to accomplish the goals of this paper.

4.1 Benchmark Designs

To gain a better understanding of soft-error induced failure modes
and how frequent such failure modes occurs, it is necessary to
sample a diverse set of designs. As such, 15 different applications
are included in the experiments of this paper ranging from a simple
“Hello World” design to complex signal processing and computation.
As expected, AVF failure rates vary among the designs, but common
trends are found among the results.

All of the benchmark designs used in this work originated from
example designs posted on the Intel FPGA SDK for OpenCL - Devel-
oper Zone [12] and from the Terrasic OpenCL board support pack-
age for the DE5-net Stratix V. GX A7 FPGA developer board [26].
Some designs were excluded from this experiment because they did
not fit on the target device. All of the included designs and their
respective resource utilizations are listed in Table 5.

All designs listed in Table 5 were compiled by the Intel Quartus
Prime 18.0 Standard edition OpenCL compiler using the Terrasic
DE5-net BSP. They each use a wide range of resource. The smallest
design, Hello World, has the simplest kernel and is dominated by
the overhead of OpenCL supporting hardware. OpenCL hardware
includes a PCle controller, a DDR3 controller, and other interface
components used by the framework. In addition to the OpenCL
hardware, a fault injection and SEU detection IP core were added
to each design, with very little overhead, to support fault injection.

4.2 Fault Injection Setup

To collect enough data for this experiment, it was necessary to
develop an automated test flow and accompanying equipment setup.
The behavior of the host, FPGA, and application under an imposed
configuration upset is the object of interest in these experiments.
The test setup and accompanying flow are geared towards capturing
strange behavior and overcoming adverse effects to restore the
environment to a working state for subsequent sampling.

Figure 2 displays the test setup and components used by the
experiments in this work. The host is the Dell Precision T7610
described in Section 2. The Stratix V. GX A7 FPGA is part of the
Terrasic DE5-Net accelerator board. The test operator is an Intel
NUC. It orchestrates the entire flow of the experiments. The test

Session 8: Devices and Security

|
e oo I

!

.—
- ==

Power [Test
Control || Operator

Figure 2: Experiment Setup for Fault Injection Testing

Working | | Inject| | Application . . Repair / Yes
Start State Fault | Execution Diagnostics Recover
,r\ No

Figure 3: Fault Injection Flow

operator interacts with the FPGA via JTAG to inject faults and
configure the device. Interaction with the host by the test operator
is conducted via Ethernet. This allows the test operator to execute
host applications and observe behavior. When injected faults cause
experiment instability, the remote power control allows the test
operator to power cycle the host and FPGA concurrently.

4.3 Fault Injection Flow

Several fault injection flows have been developed to capture system
response behavior to upsets and estimate sensitivity [18]. Experi-
ments in this paper follow the flow shown in Figure 3. To begin, the
system must be brought into a working state. At this point, a fault is
introduced and the host application is executed to stress the system
while the fault is present. After a period of delay, which allows
any errors to propagate, a series of diagnostics are run to observe
the health of the system. These diagnostics check the output of
the application correctness and check the status of the host and
FPGA. If abnormal behavior occurs, the event is recorded and a
series of recovery procedures are conducted. If there is no abnormal
behavior, the injected fault is repaired. With the system back in a
working state, the test is repeated until sufficient data is collected
for the target application.

An important part of the described flow is the ability to diagnose
incorrect system behavior. Detecting host unresponsiveness and un-
availability of the FPGA is straight forward: if the test operator can
not communication with the host, the host is unresponsive; if the
host can not initialize the kernel, the FPGA is unavailable. Detecting
SDC is less strait forward. In these experiments, SDC is detected
by comparing the output of the kernel against co-computation by
the CPU on the host, or by comparing the output against a golden
copy stored on the host.

When a failure is detected, recovery is necessary. After recover
actions are taken, (see Section 6), the system is assumed to be in

277

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

a working state. This is not a perfect assumption. The injected
fault can cause non-CRAM bits to become corrupt, (e.g. bits in
an M20K). This kind of corruption can persist between runs of
the target application. Several runs of the host application may
complete successfully before corruption of non-CRAM bits causes a
failure. It is assumed that subsequent runs will catch failures caused
by non-CRAM bit corruption and that eventually the FPGA will
be reprogrammed to remove this corruption. Once the system has
been recovered, the test proceeds.

Each injected fault took a minute to test on average. This includes
time spent reprogramming the FPGA, injecting faults, waiting for
host application and diagnostic tests to complete, and recovering
from failure. The data presented in the next section represents
approximately 100 days of continuous testing distributed among
all of the included benchmark designs. Faults were injected and
externally scrubbed using the Quartus fault injection debugger
(FID) and associated IP cores. These operations took an average of 4
to 6 seconds to complete. Programming via JTAG takes 12 seconds
with an additional overhead of 20 seconds to start the FID software.
When reprogramming via JTAG, a system reboot is necessary so
that the host can recognize the FPGA, which takes three minutes
to complete. The same overhead is needed to perform a complete
power cycle.

4.4 Results

The results from the fault injection experiments are shown in Ta-
ble 7. This table lists all of the tested benchmark designs, the ALM
utilization, the number of faults injected for each design, and the
percent of injections that caused SDC, FPGA unavailable, and host
unresponsive failure. Designs are listed in descending order by the
overall AVF of the design for any failure. The percentage within
parentheses represents the percent of injections that caused failure
normalized to the ALM utilization. This metric is included to give a
sense of the relative sensitivity of each design to soft errors. Some
designs are much larger than others, but by using a normalized
AVF, it can be seen that smaller designs, like video downscaling, are
more sensitive to soft errors per utilized ALM than larger designs,
like Mandelbrot. The ratio between the percentage of critical bits
and the AVF for any failure is also included.

Even some of the most highly utilized designs have a small AVF
based on the results from Table 7. For example, Mandelbrot utilizes
74% of the available ALMs, yet only 11.6% of randomly upset bits
will cause a failure in the system. ALM utilization is closely related
to the percentage of critical bits. Comparing the percentage of
critical bits to the AVF for any failure, most designs have an AVF
that is 6 smaller their percentage of critical bits. The AVF for any
failure, of all designs, is at least 5x smaller than their respective
ALM utilizations, suggesting that the AVF for any failure of any
FPGA design is likely much less than the ALM utilization or the
percentage of bits that are critical in the design.

Due to all of the masking effects present in a design, (see Sec-
tion 3.3), and variations in routing utilization, it is possible for a
design with lower utilization to have a higher overall AVF than an-
other design with higher device utilization. For example, FD3D uses
7% more of the device than Mandelbrot yet it is 2.8% less sensitive
(i.e., its AVF is 2.8% less than that of Mandelbrot). Another example

Session 8: Devices and Security

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

Table 7: Fault Injection Results, AVF for specific behaviors (normalized to ALM utilization)

Design ALM Critical | Faults Silent Data FPGA Host Any Failure | Critical Bits
Utilization | Bits |Injected || Corruption |Unavailable | Unresponsive AVF to AVF Ratio

Mandelbrot 74% | 67%| 9,301||11.3% (15.3%) | 0.3% (0.4%) | 0.02% (0.03%) || 11.6% (15.7%) 5.8%
Matrix Multiply 58% | 60%| 17,094 || 9.0% (15.5%)|0.5% (0.9%)|0.03% (0.05%)| 9.6% (16.6%) 6.2
FFT2D 52% | 58%| 5223 8.5% (16.4%)|0.5% (0.9%)|0.00% (0.00%)| 9.0% (17.4%) 6.4
FFT1D 55% | 58%| 7,389 || 8.2% (14.8%)|0.4% (0.7%)|0.18% (0.32%) || 8.8% (15.9%) 6.6%
FD3D 81% | 71%| 8,094 8.2% (10.1%)|0.5% (0.6%)|0.00% (0.00%)| 8.8% (10.8%) 8.0x
JPEG Decoder 41%| 42%| 7948 34% (8.5%)|3.3% (8.2%)|0.14% (0.34%) || 7.0% (17.2%) 6.0x
Compute Score 40% | 45%| 7310|| 53% (13.2%)|1.2% (3.0%)|0.00% (0.00%)|| 6.6% (16.3%) 6.8
Channelizer 62% | 64%| 10,709 || 5.1% (8.2%)|0.4% (0.6%)|0.03% (0.05%)| 5.5% (8.9%) 11.6X
Boardtest 25% | 24%| 12,247 || 3.4% (13.7%)] 0.6% (2.6%)|0.03% (0.13%) | 4.1% (16.6%) 5.9%
Video Downscaling 22% | 21%| 11,641 3.0% (13.7%)|0.6% (2.9%)|0.04% (0.20%) || 3.7% (17.1%) 5.7%
Vector Op 21% | 20%| 6,790 2.6% (12.2%)|0.4% (1.7%) | 0.04% (0.21%) || 3.0% (14.3%) 6.6X
Vector Add 21% | 20%| 11,623 || 2.0% (9.6%)|0.4% (1.8%)|0.04% (0.21%)| 2.5% (11.7%) 8.0
Sobel Filter 21% | 19%| 6638|| 1.3% (6.2%)|0.5% (2.5%)|0.03% (0.15%)| 1.9% (9.0%) 10.2x
Hello World 20% 18% | 15442|| 0.1% (0.4%)|0.2% (0.9%)]0.01% (0.03%)|| 0.3% (1.5%) 61.3x

of this is Channelizer and JPEG decoder. Generally speaking, the
fewer resources a design uses, the smaller its overall AVF will be.
When the AVF for any failure within a design is scaled by the
ALM utilization of a design, the normalized AVF among all designs
is quite similar. Excluding Hello World, the normalized AVF for any
failure among all of the designs resides between 9% and 17% with a
mean of 14%. This suggests a strong relationship between device
utilization and actual AVF. There is greater relative variation in
the normalized AVF for FPGA unavailable and host unresponsive
failure modes. This suggests that these failure modes are more
closely tied to shared overhead among the designs such as bits
associated with device interfaces and device wide status registers.
Silent data corruption is the dominating failure behavior. It ac-
companied up to 11.3% of all randomly injected faults depending
on application resource utilization and other factors. For most of
the designs, this failure modes represents the great majority of all
failure occurrences. The other two failure modes, FPGA unavailable
and host unresponsive, are fairly small in comparison. With the
exception of the JPEG Decoder and Compute Score applications, the
AVF for the FPGA unavailable failure behavior was fairly consistent
across applications. It accompanied about 0.6%, (i.e., one in 168), of
all random faults. The host unresponsive behavior did not occur
very frequently. It accompanied about 0.04%, (i.e., one in 2,500),
of all random faults. This failure mode has a similar AVF among
all designs suggesting that it is likely related to SEUs in shared
overhead rather than SEUs in the logic of specific applications.

5 FAILURE RATE FOR LARGE-SCALE
SYSTEMS

In very large-scale FPGA systems, a design with a small AVF can
still fail frequently. For the purpose of studying the impact of soft
errors on large-scale FPGA cloud-computing, a 100,000 node system
deployed in Denver, Colorado, (3.8x NYC neutron flux) made up of
Stratix V GX A7 FPGAs is considered. An AVF of 1% in this situation
equates to 23.6 million FIT or a MTTF of one-and-a-half days.
Unlike the other failure modes, SDC is not detectable and will
occur with up to 11.3% of all random upsets in the data set collected,

278

Table 8: SDC MTTF on a 100,000 node system in Denver, CO

Design FIT MTTF
Mandelbrot 266,000,000 3.8 Hours
Matrix Multiply 212,000,000 | 4.8 Hours
FFT2D 200,000,000 5.0 Hours
FFT1D 193,000,000 5.2 Hours
FD3D 193,000,000 5.2 Hours
JPEG Decoder 80,000,000 | 12.5 Hours
Compute Score 125,000,000 8.0 Hours
Channelizer 120,000,000 8.3 Hours
Boardtest 80,000,000 | 12.5 Hours
Video Downscaling 71,000,000 | 14.2 Hours
Vector Op 61,000,000 | 16.3 Hours
Vector Add 47,000,000 | 21.2 Hours
Sobel Filter 31,000,000 1.3 Days
Hello World 2,000,000 | 2.5 Weeks

(i.e., Mandelbrot). An AVF of 11.3% in the considered 100,000 node
system equates to 266 million FIT or an MTTF of 3.75 hours. Table 8
lists the FIT and corresponding MTTF for each design as if deployed
on the considered 100,000 node system.

Other failure modes would occur less frequently and would
be easier to detect and address. In the considered system, FPGA
unavailable events would range from 5 M to 78 M FIT with a 14 M
FIT average among designs, (i.e., 3 day MTTF); host unresponsive
events would have a FIT up to 4 M averaging 1 M, (i.e., 1.5 month
MTTF). Because these failure modes occur much less frequently and
are more easily detected and addressed, they pose a much smaller
threat to system integrity and stability than SDC.

5.1 Reliable Computing and Mission Time

Although the metric “Mean-Time to Failure” (MTTF) provides a
useful measure for understanding the overall rate at which failures
in the system will occur, it does not adequately represent the fact
that many failures in the system will occur in sooner than the

Session 8: Devices and Security

Table 9: Mission Time for Different Reliabilty Constraints

r | 05| 090990999 |0.9999 | 0.99999
MT(r) (sec) || 9,446 | 1436 | 137 | 13.6 | 136 | 14

MTTEF estimate. In fact, 63% of the failures expected in the system
will occur within a time that is less than the MTTF (with some of
these failures occurring in a much shorter time than the MTTF).
The MTTF metric can give a false sense of security in suggesting
that the system will operate without failure for the amount of time
specified by the MTTF estimate.

A better measure for evaluating the rate of SDC failure for a
computing system is to estimate the time in which the system can
operate above a pre-specified level of reliability, r. This measure
is called the “mission time” (MT) and is a function of a minimum
reliability constraint, r. For example, the mission time of a sys-
tem that must operate with a reliability of r=0.99 (i.e., MT(0.99))
indicates the amount of time that the system can operate with a
probability of success of 99% or higher. The mission time can be
computed from the continuous time reliability function, R(¢). The
reliability function for failure due to soft errors can be modeled
by an exponential function used for modeling constant failure rate
systems [23]:

R(t) = e, (1)
where A is the constant failure rate (failures/time). The mission
time can be determined by assigning R(T') the reliability constraint,
r, and solving for ¢,

—In(r)

. @)
The constant failure rate can be determined by taking the reciprocal
of the mean-time to SEU upset (MTTU) estimate and scaling it by
the AVF for SDC events, or A = AVFspc/MTTU.

For the 100,000 node system in Denver running the Mandelbrot
benchmark, the MTTU = 5790/3.76 = 1540 secand A = .113/1540 =
7.3x107° failures/second. With a reliability constraint of r = .99, the
mission time for this system is only 137 seconds (about 6 minutes).
This result suggests that the system can only operate for about two
minutes with a 99% confidence that no SDC events have corrupted
the data. This time is far less than the estimated mean-time to SDC
failure of 13,628 seconds. The mission time for other reliability
constraints on this platform is summarized in Table 9.

Examining mission time in relation to reliable computing shows
that a high confidence in the computational correctness comes in
short bursts of operation. Even designs with a low SDC AVF have
short-lived mission-times for high-reliability. For example, on a
100,000 node Stratix V GX A7 FPGA system at NYC flux, a design
with a 1% AVF for SDCs only maintains a reliability higher than
five-nines (i.e., 0.99999) for six seconds. Such short periods of time
at high reliability may not be long enough for application tasks to
complete and still meet reliability requirements.

MT(r) =

6 SEU DETECTION AND RECOVERY

Because SRAM-based FPGAs are sensitive to single-event effects,
FPGA vendors provided methods for detecting SEUs within the
CRAM and and repairing the CRAM state. The technique for detect-
ing and repairing CRAM state is called Configuration Scrubbing.

279

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

1 2 3 4 56 7
Scrub Cycle v v X
L L L]
I L) L) 1
SEU ’ —_—]
SDC o—-)

Figure 4: Scrub cycles, SEU occurrence, and SDC

Configuration scrubbing is the continuous process of reading the
configuration memory, determining if there are errors, and correct-
ing these errors if found. Configuration scrubbing is asynchronous
to the operation of the active design and is performed silently in the
background. The data in the configuration memory can be repaired
by the use of error correction coding (ECC) that is included in the
configuration memory frames. Single-error correction, double-error
detection (SECDED) codes are used to allow all single-bit errors
within a frame to be corrected and all double-errors to be detected.
In addition to SECDEC encoding, a checksum is computed for the
entire configuration memory to detect complex errors that are not
detected or corrected with SECDED encoding [2].

Although configuration scrubbing is able to detect and correct
SEU-induced CRAM errors, this process is not instantaneous and
takes a considerable amount of time. For the Stratix V device used
in paper, the time it takes to perform a whole device CRAM scrub
cycle varies from 47 milliseconds to 24.20 seconds depending on the
internal clock frequency and the clock divisor. No matter how long
the scrub cycle takes, SEUs in CRAM will be present for millions of
clock cycles before they are detected and possibly corrected. For
example, consider a device with a 100 ms scrub period and a global
clock operating on a 100 MHz clock. On average, an upset in CRAM
will be present for 50 ms or five million clock cycles in this device
before it is detected and corrected by scrubbing. This temporary
CRAM upset may cause undesirable behavior in the design that
may or may not go away with the scrubbing.

Figure 4 diagrams scrubbing along side an SEU event and oc-
currence of an SDC. At position 1 in the diagram, a scrub cycle
completes. No SEUs are detected or corrected during the scrub cycle
as denoted by a check mark. At position 2, an SEU occurs in the
CRAM. This upset remains in the CRAM until it is detected and
corrected by the scrubbing engine. At position 3, an SDC appears
on the outputs of the design. This occurs after the upset has been
present in the device for several clock cycles. Errors introduced by
the upset take time to propagate through the design. At position 4,
a subsequent scrub cycle completes. This scrub cycle reports that
no SEUs were detected or corrected even though an SEU occurred
since the last completion of a scrub cycle. If an SEU occurs in a
CRAM frame after the frame is evaluated as part of the current
scrub cycle, then the SEU may remain present and undetected until
the next scrub cycle. At position 5, the scrubbing engine detects the
SEU and corrects it. At position 6, the SDC induced by the upset
either flushes out of the design or remains present as denoted by
the dotted continuation of the SDC. At position 7, the final scrub
cycle shown completes and reports that an SEU was detected and
corrected as denoted by an X.

Session 8: Devices and Security

Enabling internal CRAM scrubbing does not eliminate erroneous
behavior caused by SEUs in CRAM. Scrubbing only limits the peri-
ods of time during which SEU induced errors can propagate. If an
upset corrupts state that persists for long periods of time, (e.g., coun-
ters, state-machines, status registers, infrequently written block
memories), then this corruption will remain even after the upset is
removed. In some cases, the corrupted data will naturally flush out
of the system during normal use or through a design reset. Other
situations will require the device to be reprogrammed or power
cycled to remove the corruption [16].

In the fault injection experiments of this paper, every time a
failure is detected, a series of successively more drastic recovery
actions are conducted in succession to bring the system back into a
working state. This procedure makes it possible to determine the
least invasive recovery option necessary for each occurrence of a
failure. The first action taken is scrubbing. Scrubbing is performed
by repairing the injected fault or removing it from CRAM. Success of
the recovery action is determined by a subsequent execution of the
host application and diagnostic results. If no issue is encountered,
(i.e., the application completes without any failure), the system is
considered to be a working state and fault injection continues. If
failure behavior remains after scrubbing, a reprogramming of the
FPGA is attempted to resolve the issue. After this recovery action,
the host application is run again. If the application finishes cleanly,
fault injection continues with the next random fault; otherwise, the
host is gracefully shutdown and a power cycle is performed on the
host and FPGA concurrently.

Table 10 lists each benchmark design, the number of SDC events
observed, and the distribution of successful recovery actions taken.
SDC occurred in these benchmarks because of an upset present in
the CRAM of the device, (i.e. injected fault). Repairing the upset
does not undo the SDC that has already occurred, but it can restore
the system to a working state so that subsequent computations are
be processed correctly. Table 10 shows that configuration scrubbing
can restore the proper functionality of a design a high percentage
of the time when an SEU occurs. For many of the designs, config-
uration scrubbing is able to restore functionality 98% of the time.
That being said, some situations still required the FPGA to be repro-
grammed or the host computer and FPGA to be power cycled before
proper functionality is restored. This is likely do the corruption
of user memory, (e.g., non-CRAM bits, block memory, flip-flops),
or other persistent state [16]. This data shows that scrubbing is
effective in restoring design functionality and that, although the
rate is small, some situations still require reprogramming the FPGA
or power cycling the node.

6.1 Response Options

Knowing that SEUs can cause disruptive behavior, an appropriate
SEU detection and recovery mechanism should be implement to
address this concern. Depending on the application, some failure
behavior may be tolerable and users may only want to respond
to the most severe failure behavior caused by SEUs. There are a
number of different recovery approaches a user could take:

(1) Disable scrubbing, respond when a failure is detected,
(2) Enable scrubbing, respond when a failure is detected,
(3) Respond every time an SEU is detected, or

280

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

Table 10: SDC System Restoration

Design Events || Scrub |Reprogram | Power Cycle
Mandelbrot 1,050/ 99.5% 0.5% 0.0%
Matrix Multiply 1,530| 99.2% 0.8% 0.0%
FFT2D 44211 99.1% 0.9% 0.0%
FFT1D 606 (| 99.2% 0.8% 0.0%
FD3D 667 || 98.7% 1.3% 0.0%
JPEG Decoder 273198.2% 1.1% 0.7%
Compute Score 3901(|97.2% 2.8% 0.0%
Channelizer 541/ 98.0% 2.0% 0.0%
Boardtest 41211 97.1% 2.9% 0.0%
Video Downscaling 34511 94.2% 5.8%, 0.0%
Vector Op 1741]95.4% 4.6% 0.0%
Vector Add 2331]98.3% 1.3% 0.4%
Sobel Filter 85| 90.6% 8.2% 1.2%
Hello World 121 66.7% 8.3% 25.0%

(4) Respond only to upsets in the most critical regions.

A user could take a minimal approach by disabling scrubbing and
only responding to detectable failure modes: FPGA unavailable and
host unresponsive. In the system referenced in Section 5, these
events are infrequent. FPGA unavailable would occur once every
3 days on average and host unreachable would occur once every
1.5 month on average. Using this approach, users should at least
consider periodically checking for SEUs and recording their occur-
rence for use in failure analysis when unexpected behavior occurs.
This mode misses out on the protection from continual SDCs that
scrubbing provides. Going without this protection may not be a
great concern, especially if the FPGA is frequently reprogrammed.

Enabling scrubbing and only responding to detectable failuresis a
good option for preventing continual SDC. In most cases, scrubbing
is a very effective means for restoring the system to a working state,
but scrubbing alone will not completely prevent SDCs from ever
happening. User concerned about SDCs should consider responding
to SEUs as they are detected. Responding only to upsets in critical
regions reduces how frequently action must be taken but adds
complexity recovery implementation. In the system referenced in
Section 5, CRAM SEU events have a 25 minute MTTF, and SEU in
critical CRAM bit events have a 38 minute MTTF. Depending on the
system and operating design, responding only to upsets in critical
bits may or may not be worth the additional effort required. In the
referenced system, SDC events have a 3.8 hour MTTF. This shows
that only 1 in 9 SEU responses would actually prevent an SDC if
the user responded to every SEU and only 1 in 6 responses would
be necessary if the user responded only to upsets in critical bits
within the reference system. The other responses are effectively
overhead for the selected recovery approach.

Response to an SEU can range from a simple reset to discarding
previously generated data and power cycling the system. In order
to respond to an SEU, the user must be given access to the appro-
priate SEU detection signals. With these signals, the user can then
decide how to respond when an SEU occurs. To tolerate a large
number of SEU-induced failures at a software level, at a minimum,
hardware must be able to detect and report any SEUs in a timely
enough manner so that the software level can isolate resulting

Session 8: Devices and Security

errors and take appropriate recovery actions [4]. Assuming compu-
tation between nodes is independent, overhead of response would
be minimal, as only effected nodes would need to be recovered. Ad-
ditional software or design level fault-tolerance techniques could
also be used to detect and correct errors. As more large-scale FPGA
accelerator platforms come online, the number of nodes and risk of
SEU-induced SDC necessitate the implementation of an appropriate
SEU response mechanism.

7 CONCLUSION

Industry is making use of hundreds of thousands of FPGAs to ac-
celerate cloud computing applications. The FPGAs being used are
susceptible to radiation-induced soft errors. Individual nodes have
a relatively low soft error rate, (e.g., 1 upset every 18 years on aver-
age for a Stratix V GX A7 FPGA in NYC neutron flux); but when
numerous nodes are deployed, the soft error rate increases dramat-
ically. This paper looks at the impact of SEUs on large-scale FPGA
cloud-computing systems. A hypothetical, but realistic hundred-
thousand node Stratix V GS A7 FPGA system deployed in Denver
is considered where upsets occur on average every half-hour.

Not all SEUs adversely affect the functionality of an FPGA cloud
computing application, but some compromise system integrity and
stability. Fault injection testing of 15 designs estimates their overall
AVF to be between 0.3% and 11.6% depending on resource utilization
and error masking. Estimated AVF was found to be at least 5x
smaller than the percentage of utilized ALMs or percentage of bits
tagged as critical. Most observed failures were SDC events. Within
a 100,000 node system deployed in Denver, the design with the
highest AVF, (i.e., Mandelbrot), would have a 3.8 hour MTTF for
SDC, a 3 day MTTF for FPGA unavailable, and a 1.5 month MTTF
for host unresponsive. FPGA unavailable and host unresponsive
behaviors are easy to detect; responding to these events carries
negligible overhead.

SDC is difficult to detect and can have broad impact on the
system. Applications that require high-reliability must have short
mission-times or implement appropriate SEU response techniques.
In the considered 100,000 node environment mission-time for a
reliability specification of 0.99 is less than two minutes. Scrubbing
can be used to address SDC by responding to SEUs as they oc-
cur. One less the AVF is the percentage of SEU responses that are
unnecessary. System wide response to each SEU can significantly
lower availability and will not necessarily address all SDC events.
One in 10 upsets occurs in non-CRAM bits based on the ratios
between the populations and approximately one in every hundred
SEU would occur in non-CRAM design state of the Mandelbrot
design. To avoid SDC from upsets in non-CRAM bits, additional
mitigation-techniques need to be applied to the target design.

ACKNOWLEDGMENTS

This work was supported by the Utah Space Grant Consortium and
by the I/UCRC Program of the National Science Foundation under
Grant No. 1738550.

REFERENCES

[1] 2006. Measurement and reporting of alpha particle and terrestrial cosmic ray-
induced soft errors in semiconductor devices. Retrieved December 12, 2018
from https://www.jedec.org/sites/default/files/docs/JESD89A.pdf

281

FPGA ’19, February 24-26, 2019, Seaside, CA, USA

[2] P. Adell et al. 2008. Assessing and mitigating radiation effects in Xilinx SRAM
FPGAs. In 2008 European Conference on Radiation and Its Effects on Components
and Systems. 418-424.

[3] J. Arram et al. 2015. RAMETHY: Reconfigurable acceleration of bisulfite sequence

alignment. In Proceedings of the 2015 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays. ACM, New York, NY, USA, 250-259.

L. Barroso et al. 2018. The Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale Machines, Third edition. Synthesis Lec-

tures on Computer Architecture 13, 3 (2018), 1-189. https://doi.org/10.2200/

S00874ED3V01Y201809CAC046

R. Baumann. 2001. Soft errors in advanced semiconductor devices — Part I: The

three radiation sources. IEEE Transactions on Device and Materials Reliability 1, 1

(2001), 17-22.

A. Caulfield et al. 2016. A cloud-scale acceleration architecture. In 2016 49th

Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 1-13.

https://doi.org/10.1109/MICRO.2016.7783710

M. Ceschia et al. 2003. Identification and classification of single-event upsets in

the configuration memory of SRAM-based FPGAs. IEEE Trans. Nucl. Sci. 50, 6

(2003), 2088-2094.

E. Chung et al. 2018. Serving DNNs in real time at datacenter scale with Project

Brainwave. IEEE Micro 38, 2 (2018), 8-20.

C. Clopper and E. Pearson. 1934. The use of confidence or fiducial limits illustrated

in the case of the binomial. Biometrika 26, 4 (1934), 404-413.

Deloitte. 2017. Hitting the accelerator: the next genera-

tion of machine-learning chips. Retrieved December 12,

2018 from https://www2.deloitte.com/content/dam/Deloitte/

global/Images/infographics/technologymediatelecommunications/

gx-deloitte-tmt-2018-nextgen-machine-learning-report.pdf

B. Frank. 2017. Microsoft unveils Brainwave, a system for running super-fast

AL Retrieved December 12, 2018 from https://venturebeat.com/2017/08/22/

microsoft-unveils-brainwave-a- system-for- running- super-fast-ai/

Intel. 2018. Intel FPGA SDK for OpenCL - Developer Zone. Retrieved

December 12, 2018 from https://www.intel.com/content/www/us/en/

programmable/products/design- software/embedded- software-developers/

opencl/developer-zone.html

A. Keller et al. 2018. Dynamic SEU Sensitivity of Designs on Two 28-nm SRAM-

Based FPGA Architectures. IEEE Trans. Nucl. Sci. 65, 1 (2018), 280-287.

S. Mukherjee et al. 2003. A systematic methodology to compute the architectural

vulnerability factors for a high-performance microprocessor. In Proceedings. 36th

Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36.

29-40.

E. Nurvitadhi et al. 2017. Can FPGAs beat GPUs in accelerating next-generation

deep neural networks?. In Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. ACM, New York, NY, USA, 5-14.

B. Pratt et al. 2006. Improving FPGA Design Robustness with Partial TMR. In

2006 IEEE International Reliability Physics Symposium Proceedings. IEEE, 226-232.

H. Quinn. 2014. Challenges in Testing Complex Systems. IEEE Trans. Nucl. Sci.

61, 2 (2014), 766-786. https://doi.org/10.1109/TNS.2014.2302432

H. Quinn et al. 2013. Fault Simulation and Emulation Tools to Augment Radiation-

Hardness Assurance Testing. IEEE Trans. Nucl. Sci. 60, 3 (2013), 2119-2142.

H. Quinn and P. Graham. 2005. Terrestrial-based radiation upsets: a cautionary

tale. In 13th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines. 193-202.

P. Ramachandran et al. 2008. Statistical Fault Injection. In 2008 IEEE International

Conference on Dependable Systems and Networks With FTCS and DCC (DSN). IEEE,

122-127.

E. Schadt et al. 2010. Computational solutions to large-scale data management

and analysis. Nature Reviews Genetics 11, 9 (2010), 647-657.

B. Schroeder. 2011. DRAM errors in the wild: A large-scale field study. Commun.

ACM 54, 2 (2011), 100-107.

D. Siewiorek and R. Swarz. 1998. Reliable computer systems (third ed.). A. K.

Peters, Natick, MA.

A. Silburt et al. 2008. Specification and Verification of Soft Error Performance in

Reliable Internet Core Routers. IEEE Trans. Nucl. Sci. 55, 4 (2008), 2389-2398.

L. Stamoulias et al. 2017. Hardware accelerators for financial applications in

HDL and High Level Synthesis. In 2017 International Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation. 278-285.

Terasic. 2018. Stratix V - DE5-Net FPGA Development Kit. Retrieved December

12, 2018 from https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=

English&No=526

D. Thomas et al. 2009. A comparison of CPUs, GPUs, FPGAs, and massively

parallel processor arrays for random number generation. In Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate Arrays. ACM,

New York, NY, USA, 63-72.

M. Wirthlin. 2015. High-reliability FPGA-Based systems: Space, high-energy

physics, and beyond. Proc. IEEE 103, 3 (2015), 379-389.

Xilinx Inc. 2018. Device Reliability Report. Xilinx Inc. Retrieved December 12, 2018

from https://www.xilinx.com/support/documentation/user_guides/ug116.pdf

[4]

[5]

G

[7]

(8]

[10

[11

[12

[13

(14]

=
i)

[16

[17]
(18]

[19]

)
=

[21]

[22

[23]

[24

[25

[28

[29

https://www.jedec.org/sites/default/files/docs/JESD89A.pdf
https://doi.org/10.2200/S00874ED3V01Y201809CAC046
https://doi.org/10.2200/S00874ED3V01Y201809CAC046
https://doi.org/10.1109/MICRO.2016.7783710
https://www2.deloitte.com/content/dam/Deloitte/global/Images/infographics/technologymediatelecommunications/gx-deloitte-tmt-2018-nextgen-machine-learning-report.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Images/infographics/technologymediatelecommunications/gx-deloitte-tmt-2018-nextgen-machine-learning-report.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Images/infographics/technologymediatelecommunications/gx-deloitte-tmt-2018-nextgen-machine-learning-report.pdf
https://venturebeat.com/2017/08/22/microsoft-unveils-brainwave-a-system-for-running-super-fast-ai/
https://venturebeat.com/2017/08/22/microsoft-unveils-brainwave-a-system-for-running-super-fast-ai/
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://doi.org/10.1109/TNS.2014.2302432
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=526
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=526
https://www.xilinx.com/support/documentation/user_guides/ug116.pdf

	Abstract
	1 Introduction
	2 FPGAs in the Cloud
	3 Soft Errors in FPGAs
	3.1 Soft Error Rates
	3.2 Effect of SEUs on FPGA Designs
	3.3 Architectural Vulnerability Factor
	3.4 System Failure Modes

	4 fault injection experiments
	4.1 Benchmark Designs
	4.2 Fault Injection Setup
	4.3 Fault Injection Flow
	4.4 Results

	5 Failure Rate for Large-Scale Systems
	5.1 Reliable Computing and Mission Time

	6 SEU Detection and Recovery
	6.1 Response Options

	7 Conclusion
	Acknowledgments
	References

