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Abstract—Low-power, high-performance, System-on-Chip (SoC)
devices, such as the NVIDIA Tegra K1 and Tegra X1, have
many potential uses in aerospace applications. Fusing ARM
CPUs and a large GPU, Tegra SoCs are well suited for image
and signal processing. However, fault masking and tolerance
on GPUs is relatively unexplored for harsh environments. With
hundreds of GPU cores, a complex caching structure, and a
custom task scheduler, Tegra SoCs are vulnerable to a wide
range of single-event upsets (SEUs). Triple-modular redun-
dancy (TMR) provides a strong basis for fault masking on a
wide range of devices. GPUs pose a unique challenge to a
typical TMR implementation. NVIDIA’s scheduler assigns tasks
based on available resources, but the scheduling process is not
publicly documented. As a result, a malfunctioning core could
be assigned the same block of code in each TMR module. In
this case, a fault could go undetected, impacting the resulting
data with an error. Likewise, an upset in the scheduler or cache
could have an adverse impact on data integrity.

In order to mask and mitigate upsets in GPUs, we propose
and investigate a new method that features persistent threading
and CUDA Streams with TMR. A persistent thread is a new
approach to GPU programming where a kernel’s threads run
indefinitely. CUDA Streams enable multiple kernels to run con-
currently on a single GPU. Combining these two programming
paradigms, we remove the vulnerability of scheduler faults, and
ensure that each iteration is executed concurrently on different
cores, with each instance having its own copy of the data. We
evaluate our method with an experiment that uses a Sobel filter
applied to a 640x480 image on an NVIDIA Tegra X1. In order
to inject faults to verify our method, a separate task corrupts
a memory location. Using this simple injector, we are able to
simulate an upset in a GPU core or memory location. From this
experiment, our results confirm that using persistent threading
and CUDA Streams with TMR masks the simulated SEUs on
the Tegra X1. Furthermore, we provide performance results to
quantify the overhead with this new method.
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1. INTRODUCTION
NVIDIA’s Tegra K1 and Tegra X1 System-on-Chip (SoC)
devices are becoming a popular choice for high-performance
embedded computing (HPEC). Combining large Graphics
Processing Units (GPUs), capable of running Compute Uni-
fied Device Architecture (CUDA) applications, and low-
power ARM Central Processing Units (CPUs), Tegra SoCs
can achieve over 500 GFLOPS of peak Float32 performance.
This compute horsepower, found only in high-power acceler-
ators only a few years ago, is available to HPEC applications
with a thermal design power (TDP) of just 10 Watts. While
the computational performance is impressive, this horse-
power comes at the cost of system complexity. The massively
parallel structure of a Tegra X1’s GPU combines hundreds of
cores, a complex caching structure, a custom task scheduler,
and a unified CPU-GPU memory.

Graphics rendering has been a staple of most SoCs for years;
however, general-purpose GPUs (GPGPUs) are a relative
newcomer. GPGPUs got their start in the data center, ac-
celerating the largest of problems. Until recently, embed-
ded GPUs focused mainly on driving displays. NVIDIA’s
Tegra SoCs are among the first low-power GPGPUs. Since
embedded GPGPUs are just now becoming mainstream, their
use in harsh environments is not well understood. One of
the main challenges facing embedded GPGPUs in aerospace
applications is reliability and fault masking in radiation-rich
environments.

A Single-Event Upset (SEU) can affect a GPU in multiple
ways. From a data upset in memory or cache to a logic upset
in a core or the scheduler, fault mitigation is a complicated
task. Much of the existing work in GPU fault tolerance
focuses on algorithm-based fault-tolerance (ABFT) to catch
data errors. However, ABFT does not account for logic errors
in scheduler or core execution and is limited to linear algebra
and other similar applications. Triple-Modular Redundancy
(TMR) offers an accepted mitigation and masking strategy
for most systems. By triplicating system operation and
comparing the outputs, a potential error can be identified and
prevented.

Applying TMR to a GPU application can be achieved through
either a time-based or a concurrent solution. A time-based
approach would execute a kernel three times sequentially and
evaluate the results. A concurrent approach would leverage
CUDA streams to run three instances of the kernel concur-
rently. Both approaches would easily mask data faults, but
could still produce errors due to logic faults in a core or sched-
uler. Since all operations on a GPU rely on the scheduler to
manage each thread, a logic fault in the task scheduler could
go undetected. Furthermore, since the NVIDIA scheduler
does not guarantee determinism in how tasks are assigned
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to cores, a malfunctioning core could be used for multiple
different threads, leading to incoherent results.

In order to prevent scheduler errors, we propose a new ap-
proach to GPU fault masking using Persistent Threads (PTs).
A Persistent Thread is a device-specific implementation of a
task that is designed to run forever. This dataflow approach is
similar to Field-Programmable Gate Array (FPGA) program-
ming in Verilog. Like an FPGA, a GPU could run multiple
PTs via CUDA Streams, removing much of the scheduler
workload. Using PTs and CUDA Streams on an NVIDIA
GPU, we can triplicate a kernel and execute it in parallel,
similar to a typical TMR solution on an FPGA.

In order to evaluate Persistent Threads for fault masking, we
implement this approach with a Sobel filter on a 640 × 460
image on a Tegra X1 SoC. We simulate SEUs via a concurrent
CUDA kernel corrupting user-specified data streams. We also
compare our TMR approach to a CPU-only implementation
to evaluate performance. Using this approach, we are able
to correct for 100% of injected faults and achieve a 1.5 ×
speedup over a CPU approach.

2. BACKGROUND
NVIDIA GPUs are massively parallel devices. According
to [1], the Tegra X1’s GPU contains two Streaming Multi-
processors (SM). These SMs are designed according to the
NVIDIA Maxwell Architecture outlined in [2]. Each SM
contains 128 Float32 cores. The SM is broken up into four
sections of 32 cores each. Each block of 32 cores is managed
by its own Warp Scheduler. Each Warp can handle up to
32 threads. The exact method of Warp scheduling is not
published; however [3] provides an overview of the threading
model.

In order to effectively develop software for an NVIDIA GPU,
we must first understand the threading hierarchy. As seen
in Figure 1 and outlined in [3], a thread is the lowest level
scheduled on a single core. Threads are logically grouped
together into a thread block. A thread block can have up to
1024 threads. Thread blocks are assigned to an SM, sharing
memory between threads. While only 128 threads will be
executing at a time, the Warp scheduler will swap threads
inside an SM based on memory stalls. If there are more thread
blocks than SMs, then the excess blocks are enqueued until
an SM is free. The grouping of thread blocks is called a grid.

At any given instant, 256 threads could be executing on
a Tegra X1. In addition, hundreds of threads could be
enqueued, waiting to execute. The typical approach to CUDA
programming exploits this massive parallelism, trading de-
terminism for high performance. Our approach to fault
mitigation seeks to balance this programming paradigm with
lessons learned in fault tolerance. This balance requires
trading some degree of parallelism with the determinism
afforded by CUDA Streams and persistent threads.

GPU Fault-Tolerance

Prior to the Tegra K1, CUDA-capable GPUs consumed tens
of Watts and were not common in embedded systems. Thus,
there is limited prior work in GPU fault tolerance. The au-
thors of [4] and [5] note the overhead of implementing a TMR
solution. Focusing on Cholesky Decomposition, their ABFT
approach seeks to focus on correcting data errors, during both
computation and storage, on high-power accelerators. This
new ABFT approach introduces only 4% to 6% overhead for

Figure 1. Overview of GPU threading model [3].

Cholesky Decomposition, making their approach comparable
performance to non-fault-tolerant solutions.

Investigating ABFT with SEUs due to radiation, [6] con-
cluded that GPU schedulers are prone to upsets. The authors
investigated several benchmarks on a Tesla C2050 and a
GTX480 GPU in a radiation-rich environment. They ob-
served an increase in faults as the degree of parallelism
increases. For the Matrix Multiplication benchmark, the au-
thors enabled Error-Correcting Code (ECC) memory. While
ECC memory on the GPUs was able to mitigate many of the
data errors, enabling ECC reduced the total cache by over
10%. Cache size can have a profound impact on performance.
Thus, the authors looked to an ABFT solution to mitigate
errors, while not enabling the ECC feature. During radiation
testing, the authors of [6] observed an inverse relationship
between the number of multiple random errors and the num-
ber of threads assigned to a block, with the same degree of
parallelism. In order to investigate the impact of parallelism
and the device scheduler, they explored two simple kernels
that perform 10,000 adds or multiplies, respectively. The
authors found that maximum parallelism results in the largest
number of errors and reducing either blocks or threads im-
proves performance. From these experiments, the authors
concluded that the GPU scheduler, managing a high degree
of parallelism, can have profound impacts on fault tolerance.

Selecting the best strategy for fault masking or tolerance on
a GPU is a complex process. As the authors of [7] identified,
TMR provides a robust, portable solution, while incurring
performance and power overhead. ABFT has the potential to
increase performance, detecting and correcting single errors.
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However, experimental results suggested multiple errors are
likely to happen on a GPU in a radiation environment. As
a result, the kernel would need to be recalculated, incurring
similar overhead to TMR. The authors proposed an extension
to ABFT, coined ExtABFT, to correct for multiple errors
without recalculating the kernel. Applying this new approach
to Matrix Multiplication, the authors achieved more efficient
performance for matrices larger than 256×256. For example,
a 2048 × 2048 ExtABFT solution achieved nearly the same
performance as a non-fault-tolerant implementation. How-
ever, ABFT and ExtABFT can only be applied to a limited
set of algorithms, requiring a unique implementation for each
kernel.

TMR is an obvious choice for fault masking and tolerance.
However, the overhead required for TMR can have adverse
impacts in device performance. The authors of [8] investigate
implicit Double Modular Redundancy (DMR) and TMR in
GPU code execution. Since GPUs are massively parallel
devices, the authors exploit two common issues with large,
complex systems: underutilization and redundancy. Using
redundant calculations in applications, the authors leverage
an implicit form of DMR to detect errors and then force TMR
once an error is detected. This approach reduces the overhead
of doubling or tripling a complete system, incurring only a
8.4% and 29% overhead for DMR and TMR, respectively. If
an application has good resource utilization and the algorithm
minimizes redundant calculations, this approach may incur
additional overhead.

CUDA Streams

Maximizing device utilization often requires a GPU to con-
currently execute more than one kernel at any given in-
stant. CUDA handles concurrency through Streams [3].
Kernels can be assigned to a stream and executed sequen-
tially; however, multiple streams can execute on a GPU
concurrently. Multiple streams enable concurrency between
kernel instances. The authors of [9] provide a strong case for
the benefits of concurrent kernel scheduling with regards to
power efficiency. Ensuring all device resources are used is
key to maximizing energy efficiency. Using CUDA Streams
and a custom scheduler, they were able to achieve a 34.5%
increase in operations per Watt.

Persistent Threads

Concurrency can improve power efficiency, but each kernel
launch still requires runtime overhead. Persistent Threading
on NVIDIA GPUs is a programming paradigm where kernel
threads execute the same task until the device is reset or
the program is complete. PTs adds some determinism to an
application, as the scheduled block will be assigned to an SM
and the threads will continue to remain active. PT was first
detailed in [10]. The authors outlined four use cases of PT:
CPU-GPU Synchronization; Load Balancing; Maintaining
Active State; and Global Synchronization. Each use case
addressed a problem where a kernel must either complete and
be restarted, requiring overheard from the CUDA runtime
API, or challenges within the CUDA programming model.
PTs addressed these issues by creating a software sched-
uler that can have more insight into program dataflow than
NVIDIA’s hardware scheduler. However, a kernel containing
PTs must also be designed to not overflow the hardware
scheduler. Too many PTs will result in tasks failing to be
scheduled and the system locking up. Lastly, the authors
of [10] identified that PTs do not always result in better
performance or improved productivity. Since there is no
NVIDIA support for PTs, an efficient implementation can be

complex and time-consuming.

CPU-GPU Synchronization was one of the main use cases for
PTs. The authors of [11] used PTs to minimize CPU-GPU
communication for genetic algorithms. They directly com-
pared the traditional CUDA programming paradigm against
their PT approach, resulting in a 2 × speedup. Highlighting
the complexities involved with PTs, the authors identified the
potential to simplify and automate some of the development
process.

3. APPROACH
TMR on GPUs, leveraging concurrency with CUDA Streams
and the determinism afforded by PT, is unexplored. While
ABFT can easily detect data errors, the massively parallel
nature of a GPU presents many opportunities for a logic SEU.
NVIDIA documentation does not guarantee any determin-
istic approach to process scheduling, making it impossible
to identify the source of an error. Concurrent PTs enable
a more deterministic approach to scheduling while shifting
additional responsibilities to the developer.

Concurrent TMR with Persistent Threading

A software TMR solution has two potential approaches on
a multi-core processor: time-based and concurrent. Time-
based TMR executes three times in a row, comparing the
results. The time-based approach mitigates transient errors
in computation, but can be affected by logic errors in the
scheduler. In a modern GPU, a scheduler error could keep a
thread from being completely executed. Furthermore, should
a core suffer a more-permanent upset, the scheduler may still
assign it tasks, leading to incoherent data.

Concurrent TMR ensures each redundant calculation is com-
pleted by a different core. In a GPU, concurrency is several
groups of cores, minimizing the effects of a single mal-
functioning core. However, concurrency reduces the overall
parallelism of the device, potentially resulting in degraded
performance. If a kernel’s parallelism is not carefully calcu-
lated, the partitioned GPU may be forced to enqueue threads,
resulting in potential scheduling errors.

In order to mitigate the potential scheduler upsets, PT reduces
the load on the hardware scheduler. PT kernels, once started,
will continue to run until the reset. By designing the grid
and thread blocks of a PT kernel to map as close as possible
to the device architecture, we can reduce the task switching
performed by the Warp schedulers. However, miscalculating
the correct grid and thread block topology could lock up
the device, with PTs never getting scheduled. Memory
management is another major drawback of PTs. Without a
definite endpoint, it is impossible for the CUDA runtime API
to know when a kernel finishes computation. Thus, it is up to
the developer to create their own method of synchronization
to copy data to and from the device.

TMR VGA Sobel Filter on Tegra X1

The NVIDIA Tegra X1 is computationally suited for image-
processing applications and thus provides the perfect testbed
for our approach. A Sobel filter on a VGA (640×480) image
is a common kernel for many vision systems. Requiring
two convolutions, this kernel is highly parallel and compute
intensive. These characteristics ensure the device is well
utilized, while still enabling scaling to allow for concurrent
execution.
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Figure 2. Concept Diagram for proposed Sobel TMR
approach.

Figure 2 presents an overview of how concurrent TMR with
PT can be applied to our Sobel Filtering application. The
hybrid application leverages both the Tegra’s CPUs and GPU
to complete computation. While the massively parallel GPU
performs the image processing, the CPU handles control
code, scrubbing, and voting.

The Tegra X1’s CPU and GPU share the same main mem-
ory. In order to use this feature, we use CUDA Mapped
Memory to avoid copying data to and from the GPU. The
compute aspects of TMR are well suited for a GPU; however,
the comparison and voting on the outputs would not take
advantage of GPU resources. As a result, we can partition
our TMR approach to use the CPU cores for voting and the
GPU cores for computation. Since the memory between the
devices is shared, the CPU can operate directly on the GPU
output, improving performance. Using double buffering, the
processing and voting can happen concurrently, resulting in
a pipelined application. This characteristic is important for
streaming applications.

As noted in [6], minimizing scheduler workload can reduce
errors in the system. For this experiment, the GPU on the
Tegra X1 is partitioned into three equal sets of eighty threads
for a VGA image. While sixteen cores will remain unused,
the VGA image is easily divided in subframes without ex-
ceeding the total number of cores on the device. Evenly
sharing the workload requires each kernel to have two thread
blocks of forty threads each, as seen in Figure 2, ensuring
each SM receives 120 threads. Using only 240 threads
reduces the degree of parallelism, minimizing the load on the
scheduler. Thus, each thread processes a 12 × 320 subframe
of the image as seen in basic CUDA kernel pseudocode in
Algorithm 1.

Algorithm 1 GPU Sobel Filter Image Partitioning
1: threads = 40
2: blocks = 2
3: procedure SOBELFILTER(*IMAGEIN, *IMAGEOUT)
4: lines = 480/threads
5: pixels = 640/blocks
6: for y = threadId×lines; y < lines; y++ do
7: for x = blockId×pixels; x < pixels; x++ do
8: Convolution(imageIn[x][y], filter);

Converting a standard CUDA kernel to a PT requires the addi-
tion of several loops and conditions as noted in Algorithm 2.
The first structure to add is the main while loop. This loop

surrounds all of the computation. Only initial configuration
and memory declarations should be outside the loop. Next
add a conditional statement to determine if memory is syn-
chronized and the thread is commanded to run. If the thread
is idle, it should periodically poll to see if things change.
Flags monitored by the loop and conditional structures are
CUDA Mapped Memory locations, shared by both the CPU
and GPU, enabling the CPU to control execution.

Algorithm 2 GPU Persistent Thread Sobel Filter
1: procedure PTSOBELFILTER(*IMAGEIN, *IMAGEOUT,

*START, *STOP)
2: DeclareMemory();
3: CalculateThreadOffsets();
4: CalculateBlockOffsets();
5: while !*stop do
6: if *start then
7: SobelFilter(*imageIn, *imageOut);
8: *start = 0;
9: else
10: Sleep();

Algorithms 1 and 2 outline much of the CUDA kernel.
However, other than using the grid and thread block dimen-
sions, there is little to indicate concurrency. In order to use
CUDA Streams, the CPU must first create three streams.
The NVIDIA kernel launch parameters have a field for a
stream assignment. Since each CUDA kernel launch is asyn-
chronous, the CPU code can sequentially start each kernel.
Once the kernels are started, they will wait until the CPU sets
the start flag.

Algorithm 3 CPU Sobel Filter Control
1: procedure MAIN()
2: DeclareMemory();
3: CreateStreams(3);
4: <<<2, 40, 0, 1>>>PtSobelFilter(args[1]);
5: <<<2, 40, 0, 1>>>PtSobelFilter(args[2]);
6: <<<2, 40, 0, 1>>>PtSobelFilter(args[3]);
7: while validImages do
8: SetMemory();
9: *start1=1;
10: *start2=1;
11: *start3=1;
12: VoteOnPreviousOutputs();
13: while *start1 || *start2 || *start3 do
14: Sleep();

15: *stopAll=1;
16: FreeMemory();

Before the CPU sets the start flag, the CPU must first ensure
that the image is in memory. Since we are using CUDA
Mapped Memory, there is no need to explicitly copy the
memory to the GPU memory space. This feature is unique
to the Tegra K1 and X1. Likewise, when computation is
complete, there is no need to copy the memory from the
device. Using double buffering, we can pipeline the appli-
cation, hiding the voting behind the kernel execution. The
CPU implementation is summarized in Algorithm 3.

Scrubbing

If one of the three kernels suffers a non-transient upset, the
kernel may need to be reset. The proposed approach enables
basic scrubbing by halting execution on one kernel, forcing
the threads to complete. This operation can be triggered by
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Algorithm 4 CPU Sobel Filter Control with Scrubbing
1: procedure MAIN()
2: DeclareMemory();
3: CreateStreams(3);
4: <<<2, 40, 0, 1>>>PtSobelFilter(args[1]);
5: <<<2, 40, 0, 2>>>PtSobelFilter(args[2]);
6: <<<2, 40, 0, 3>>>PtSobelFilter(args[3]);
7: while validImages do
8: SetMemory();
9: *start1=1;
10: *start2=1;
11: *start3=1;
12: VoteOnPreviousOutputs();
13: while *start1 || *start2 || *start3 do
14: Sleep();

15: if persistentErrorDetected() then
16: bad = getAffectedKernelNumber();
17: stopAffectedKernel(bad);
18: <<<2, 40, 0, bad>>>PtSobelFilter(args[bad]);

19: *stopAll=1;
20: FreeMemory();

the CPU control code as seen in Algorithm 4. Modification to
support scrubbing requires a simple conditional statement if
a persistent error is detected. Once the kernel is identified, it
can be stopped and relaunched. Identification of a persistent
fault is handled by the voter. When comparing output values,
the voter tracks fault locations. Should a fault be present
in the same location in three successive iterations of the
kernel, the system assumes there is a persistent fault with
the offending thread. Scrubbing avoids a full GPU reset,
minimizing overhead to the TMR application.

Fault Injector

In order to evaluate the proposed TMR Sobel filter, we must
inject faults into the Tegra X1. While the CUDA debugger
can enable a step-by-step execution of a kernel, simulating
repeated upsets would be a slow process. To help automate
this process, a tool called SASSI [12] was created. SASSI
enables instrumentation and profiling of an NVIDIA GPU to
better understand kernel execution. It can be used to inject
faults. However, SASSI is not currently supported on Tegra
SoCs. As a result, we are forced to create our own simple
fault injector.

Algorithm 5 GPU Fault Injector
1: threads = 1
2: blocks = 1
3: procedure FAULTINJECTOR(*IMAGE, *X, *Y, ITERA-

TIONS, *VALUE)
4: for i =0; i ¡ iterations; i++ do
5: image[x[i]][y[i]] = value[i];

To simulate a fault, we simply change a user-specified loca-
tion in memory. This upset can either be injected by a CUDA
kernel or the CPU, acting on mapped memory. We chose to
implement our injector on the GPU to enable portability to a
device without unified memory. This simpler kernel receives
a pointer to the buffer to be upset, an array of the coordinates
of the memory location to change, total number of upsets, and
an array of new values for the memory location. The kernel
can be launched in its own stream by the CPU and inject
the upset. To simulate a failed thread, we inject a fault to
a specific subframe for multiple iterations of the Sobel Filter.

Figure 3. Comparsion of Sobel Filtering on Tegra X1.

The fault injector is outlined in Algorithm 5, enabling both
single and multiple fault upsets for a given iteration.

4. RESULTS
The proposed TMR approach was implemented in C as
outlined in the previous section. The code was tested to
ensure it operated correctly without the introduction of vaults.
Next, both transient and persistent faults were introduced into
the system. GPU execution correctly produced two valid
datasets and one containing errors. The CPU voter evaluated
each pixel and logged masked faults. TMR correctly handled
and masked all faults, and after 3 iterations, the scrubber
relaunched the problem kernel. We also investigated device-
wide transient faults, such that no kernel produced the correct
result. While no single output image was perfect, the voter
was able to mask the faults to produce the expected results.
From these observations, we established that the implemen-
tation is functional.

Next we compared our approach to several Sobel Filtering
implementations as seen in Figure 3. The baseline compari-
son is a non-TMR approach using 240 threads. Implementing
the subframe approach as outlined in Algorithm 1, the grid
was defined as two blocks of 120 threads. A 240-thread
kernel represents the best-case implementation, while mini-
mizing scheduler load by not exceeding the number of cores
on the GPU. Performance is low due to the large subframes.
As a result, we were not able to leverage the on-chip shared
memory to improve device performance. In addition, since
we are using a small number of threads, the GPU is unable
to hide thread stalls due to memory accesses. This limited
parallelism results in sub-optimal kernel performance as the
kernel is highly memory-bound.

Scaling the kernel down to two blocks of forty threads, we
observe almost a 50% increase in execution time. This
performance is much better than expected, confirming the
initial implementation is highly memory-bound. Scaling up
to the our concurrent TMR approach with PTs, we observe
nearly a 3 × increase in execution time. Since each kernel
must process the entire VGA image and memory bandwidth
is suspected to be the bottleneck, this result is expected.

We compared the proposed fault-masking approach to an
OpenMP Sobel Filter on the CPU cores, mirroring the imple-
mentation on the GPU. While each Sobel Filter is serial on
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three concurrent threads, we observe a substantially longer
execution time. The proposed GPU TMR approach achieves
1.58× speedup over the CPU implementation. Furthermore,
the GPU implementation enables the 17.85 millisecond exe-
cution time of the voter to be hidden behind GPU computa-
tion, resulting in additional speedup.

5. CONCLUSIONS
Low-power GPUs are a growing trend in HPEC. The
NVIDIA Tegra K1 and X1 enable CUDA programming and
over 500 GFLOPS of peak performance at just 10 Watts
TDP. While these devices are becoming more mainstream,
the affects of harsh environments, such as radiation, are not
well understood. With no published work on Tegra SoC beam
testing, we must rely on existing work with high-power GPUs
to estimate vulnerability.

Prior work on GPU fault tolerance focuses on ABFT to
minimize overhead. While TMR provides a flexible approach
that works with any application, ABFT requires a specialized
implementation and testing. In addition, an ABFT approach
can only be applied to linear algebra and other similar ker-
nels. Evaluation of ABFT on high-power GPUs in radiation
environments reveals multiple upsets in execution, requiring
the GPU to recompute and compare the results. Furthermore,
highly parallel applications result in more errors due to load
on the hardware scheduler. As a result of this prior work,
we seek to investigate a new approach to fault masking and
tolerance on GPUs that is both portable and minimizes load
on the device scheduler.

Building on prior work, we present a concurrent TMR ap-
proach leveraging persistent threads. PTs reduce scheduler
overhead by shifting process control to the CUDA kernel.
While this programming paradigm results in additional coor-
dination for the CUDA kernel and host CPU, PTs add deter-
minism to the scheduling process. CUDA Streams provide
a method for adding concurrency to independent kernels.
Combining PTs and concurrency requires careful planning
to avoid exceeding device cores. The combination of PTs,
TMR, and CUDA Streams results in a robust, flexible, fault-
tolerant strategy for GPUs.

Evaluating the proposed TMR approach, we confirm TMR
effectively identifies and corrects for faults while the scrubber
detects and restarts malfunctioning threads. Performance of
a fault-masking GPU Sobel filter achieves 1.58 × speedup
compared to a CPU implementation. Furthermore, offloading
computation to the GPU enables pipelining for steaming
image processing, hiding the voting latency behind the GPU
computation.

6. FUTURE WORK
While the proposed approach is functional, it is unclear
if there is room for optimization. While PTs minimizes
scheduling load, it also limits the degree of parallelism. Ad-
ditional study of different data types, such as Float16, degree
of parallelism, and upset rates for Tegra SoCs is required
to improve performance. Warp schedulers can swap PTs,
enabling more threads and blocks; however, it is unclear what
impact this switching might have on application upset rates.
GPUs use a high degree of parallelism and task switching
to hide latency of memory accesses. Reducing block sizes
enables the use of shared memory while increasing thread

count. This simple optimization is key to achieving maximum
device performance, but drastically increases the load on
GPU schedulers.

In addition to improving performance, future work would
also investigate how the proposed approach scales to the older
Tegra K1 as well as higher-power GPU accelerators. The
NVIDIA Tegra K1 leverages 192 Kepler architecture cores
in a single multiprocessor and a unified CPU-GPU memory.
This change in architecture could have adverse effects on
performance as well as device utilization. Scaling up to larger
devices enables more parallelism, while also introducing
communication overhead to the non-unified memory.

PTs have the potential to improve performance for certain
applications. While fault-tolerance benefits from the added
determinism and reduced scheduling load, PTs also remove
the CUDA runtime API launch overhead. CUDA runtime
overhead is a major factor when launching many small ker-
nels. Consider a low-latency, line-based, image-processing
application. Kernel execution time may be shorter than
the overhead in copying memory and launching the kernel.
PTs could mitigate the CUDA runtime overhead, improving
performance. Additional work is needed to identify other
HPEC applications that could benefit from PTs.
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