Comparing Fine-Grained Performance on the Ambric MPPA against an FPGA

Brad Hutchings, Brent Nelson, Stephen West, Reed Curtis
NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering
Brigham Young University
Provo, UT 84602 *

Abstract

A simple image-processing application is implemented
on the Ambric MPPA and an FPGA, using a similar im-
plementation for both devices. FPGAs perform extremely
well on this kind of application and provide a good bench-
mark for comparison. The Ambric implementation starts
out with a naive implementation and proceeds through sev-
eral design optimizations until it reaches a maximum frame
rate of 164 FPS (512 x 512 images) which turns out to
be approximately 7x slower than the FPGA. The final Am-
bric implementation uses only 18 of 336 available proces-
sors, achieves more than sufficient performance for real-
time embedded applications, and has excess processors to
use for implementing additional algorithms. After intro-
ducing the image processing application and its implemen-
tation on both devices, the paper compares and contrasts
the intrinsic, general characteristics of Ambric MPPA and
FPGA devices.

1 Introduction

For over 2 decades, FPGAs have been used to accel-
erate applications in a wide variety of areas. At first,
there were really only two alternatives to the FPGA:
programmable uniprocessors such as microprocessors or
DSPs, and Application-Specific Integrated Circuits (ASIC).
Most published application studies have typically compared
FPGA performance against those 2 yardsticks (and the oc-
casional supercomputer). However, relatively inexpensive
multiprocessor devices such as GPUs and Massively Paral-
lel Processor Arrays (MPPA) have arrived and are achieving
similar levels of performance in many cases [2, 3]. More-
over, these devices are proving to be easier to program than
FPGAs [4].

*This work was supported in part by the I/UCRC Program of the Na-
tional Science Foundation under Grant No. 0801876.

978-1-4244-3892-1/09/$25.00 ©2009 IEEE

Recently, an MPPA came to market from Ambric, Inc.
Consisting of 336 processors that are programmed in Java,
the Ambric device is a highly parallel device targeted at
embedded applications. To better understand the relative
strengths and weaknesses of the Ambric device, this case
study selected a simple image-processing algorithm — So-
bel edge detection —- that is known to perform well on
FPGAs, implemented it on both an FPGA and an Ambric
MPPA and compared the two implementations. The appli-
cation was implemented in a way to exploit the fine-grained
architecture of the FPGA so Ambric’s performance on fine-
grained applications could be studied.

This effort sought to answer the following specific ques-
tions:

e Performance-wise, how close is the MPPA to the
FPGA for fined-grained computation?

e What features of the MPPA limit performance for fine-
grained applications?

The rest of this paper is organized as follows. First,
the Ambric device architecture and programming model is
introduced followed by a description of the Sobel edge-
detection algorithm. The next section‘, discusses the
VHDL-FPGA and Ambric implementations of the Sobel
edge-detection algorithm. Finally, the next section con-
trasts, in a general way, the relative strengths and weak-
nesses of the FPGA and MPPA.

1.1 Ambric and Its Programming Model

The device used in this work is the Ambric AM2045
Massively Parallel Processor Array (MPPA). The Ambric
MPPA contains 336 32-bit processors and 4.6 Mbits of
SRAM. The entire array is synchronous and operates at 300
MHz. It is a standard-cell ASIC containing 117 million
transistors and was fabricated at 130 nm [2].

The AM2045 is internally organized into a 5 X 9 array of
bric modules. Figure 1 shows one bric and its neighboring

174

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 16:49:25 UTC from IEEE Xplore. Restrictions apply.

brics'. Each bric contains two kinds of 32-bit CPUs. SRD
processors contain 3 ALUs and provide math-intensive in-
structions to support DSP operations. Each SRD processor
contains a dedicated 256-word RAM for instructions and
data. This memory can be augmented though direct con-
nections to bric memory objects. SR processors are lighter
weight and contain only 1 ALU and are often used for tasks
such as address generation. They contain a dedicated 128-
word memory for programs and data but do not have direct
connections to memory objects. Each of the two memory
objects (RU) in a bric is organized as 4 independent RAM
banks.

The intra-bric communication paths constitute the level
1 communications in the chip. Level 2 communication
channels provide direct connections to neighboring brics
as shown in the figure. These are non-shared channels
and provide high bandwidth. The level 3 interconnect is
for long-distance communications and consists of a chip-
wide 2D circuit-switched interconnect of channels. These
longer channels share physical resources and thus provide
less bandwidth than nearest neighbor channels.

Figure 1. Ambric bric Organization

As Figure 2 shows, the AM2045 chip also contains a va-
riety of external interfaces: two 32-bit DDR2-400 SDRAM
interfaces, a 4-lane PCI Express interface for chip config-
uration and data transport, a serial flash interface, a JTAG
interface, and 128 1-bit general-purpose parallel I/O ports.

IFigure 1 and Figure 2 used by permission of Ambric.

Additional details of the AM2045 can be found in [1, 2].

one bric

Figure 2. Ambric Chip Organization

There are two basic primitive objects in the Ambric pro-
gramming model: processors and memories. The memory
objects in each bric can be used in four different ways: (1)
as data storage for SRD processors (FIFO or random ac-
cess), (2) as instruction storage for SRD processors (FIFO
or random access), (3) to implement FIFOs between pro-
cessors, and (4) as random-access memory accessible over
the MPPA’s network. Multiple memory objects can be com-
bined to create deeper FIFOs.

Processors and memory objects communicate over chan-
nels that are word-wide, point-to-point and strictly ordered.
Channels behave like synchronous FIFOs and are blocking.
Channels are self-synchronizing, using a tagged approach
similar to that found in data-flow machines. Reads from an
empty channel cause a processor stall as do writes to full
channels. Self-synchronizing channels are key to the Am-
bric programming approach. They allow individual proces-
sor and memory objects to operate independently at their
own speeds, synchronizing as they receive and transmit data
on their respective channels.

Programmers develop applications on the Ambric MPPA
by writing small Java programs, one per processor. The pro-
grammer also provides a “structural” description of the ap-
plication that assigns programs to processors and defines
how processors and memories are connected together by
channels. Thus, creating an application for Ambric feels, in
many ways, similar to hardware design. The Ambric compi-
lation process produces an image which is downloaded into
the chip, not unlike an FPGA bitstream, which configures
each processor and the interconnections between them.

1.2 The Sobel Image Processing Kernel

The computation used in this work is the Sobel operator,
a 3 x 3 image convolution kernel commonly used for edge

175

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 16:49:25 UTC from IEEE Xplore. Restrictions apply.

detection. It calculates the gradient of the image intensity at
each point. Separate kernels exist for computing the gradi-
ent in the = and y directions. Mathematically, the = gradient
image GG, is computed by

1 0 -1
G,=12 0 2| xA
1 0 -1

where A is the input image. The y gradient is computed
similarly but with a transposed kernel.

In custom hardware, image convolutions such as this
are often computed using a general structure similar to that
shown in Figure 3. The raw image data is fed in from the
left in row-wise order. Each delay line buffers up one row of
the image, allowing a sliding 3 x 3 neighborhood of image
pixels to be formed in the flip flops to the right. The actual
convolution, consisting of multiplies and adds, is then per-
formed on the neighborhood to produce one result pixel for
each such neighborhood. The Convolve block computation
may be done sequentially using a single multiplier and ac-
cumulator or in a parallel pipelined fashion, depending on
the processing rates required by the application.

A typical application of Sobel is to compute both G, and
G convolutions for a given neighborhood and then produce
a final image as G = |G| + |Gy|. This is easily done by
augmenting the arithmetic logic in the Convolve block in
Figure 3 to concurrently produce both gradient results and
combine them into G.

Convolve |>Result

Delay Line
Delay Line

Figure 3. Image Convolution Hardware

2 Implementing Sobel on the FPGA

The FPGA implementation of Sobel was done on a Vir-
tex 4 FX12 part (xc4vfx12-10ff668) and closely follows
that shown in Figure 3. Two block rams were used for
the delay lines, slice flip-flops were used to form the 3 x 3
neighborhood, and the complete G = |G| + |G| result
was computed in the Convolve block. No multipliers were
required since the kernel values are powers of 2. The re-
quired additions and absolute values were done combina-
tionally. The implementation required 113 slices and runs
at 302MHz. The design description required approximately
400 lines of VHDL code.

3 Implementing Sobel on the MPPA

The initial MPPA implementation was simple and con-
sisted of only two processors. One processor was used to
implement a FIFO, the other implemented the Sobel kernel.
The FIFO processor takes an image stream as input and uses
line delays to align rows of pixels so that they can be input
to the processor that performs the convolution, just as is
done for the VHDL implementation. There is a slight dif-
ference in the implementation of the FIFO. Instead of using
three delays to form the three lines of the neighborhood, the
three lines of image data are combined to form a single data
stream by successively transmitting 1 pixel value from each
row over one channel. The processor running Sobel reads
the three values sequentially from the one channel. This
has no impact on performance because the Ambric proces-
sor has to execute 3 sequential instructions to read and syn-
chronize the input values whether the values are transmitted
through one channel or three.

Part of the inner-loop code for the Sobel processor is
shown below. The Pn values contain the individual pixel
values that were read in from the channels. Pz is the value
of the convolution with the z-mask; similarly, Py is the
value of the convolution with the y-mask. The comparisons
against zero implement absolute-value computations. Using

Program 3.1 Java Code for Sobel

P1=P2; P2=P3; P3=in.readInt();
P4=P5; P5=P6; Po6=in.readInt ();
P7=P8; P8=P9; P9=in.readInt ();
Px = (P3+P6x2+P9)— (P1+P4%2+P7);
if (Px<0)

Px = -Px;
Py = (P1+P2x2+2+P3) - (P7+P8x2+2+P9);
if (Py<0)

Py = -Py;
output = Px+Py;
out.writelInt (output);

this program, each pixel is processed in approximately 44
clock periods, resulting in a frame rate of 26 FPS (512 x
512).

The one-processor implementation was then evolved into
a fine-grained, multi-processor version that achieves a high-
level of concurrency. This highly concurrent version uses
18 processors. Each processor performs 1-2 reads, a single
arithmetic operation (add, 2x multiply, absolute value, etc)
and 1-2 writes. The programs for each of these processors
was programmed to be as short as possible so that the pixel
initiation interval could be as short as possible. The final
version required a maximum of 7 clock cycles per pixel (a

176

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 16:49:25 UTC from IEEE Xplore. Restrictions apply.

6.3x reduction from the simple one-processor version).
This highly pipelined version is not particularly efficient
but that is to be expected as the MPPA is a processor-based
array. As an example of one of the fine-grained programs,
see Program 3.2. In this code example, processors spend
most of their time reading and writing channels — 2 reads
(fan-in), a single operation such as an add, followed by 1
write. Thus, processors are only computing values approx-

Program 3.2 Java Code For Simple Pipeline Stage

int a = inl.readInt();
int b = in2.readInt();
int res = atb;

outl.writelInt (res);

imately 25% of the time, a direct result of the fine-grained
implementation strategy used here.

Compared with the FPGA, the Ambric implementation
runs approximately 1/7 as fast. Although this may seem
slow in comparison, this is a strong showing for a processor-
based array on such a fine-grained computation. We didn’t
expect the MPPA to perform this well when used in this
way. At the rate of 7 clock cycles per pixel, the MPPA
can achieve a frame rate of 164 FPS for 512 x 512 images.
Alternatively, the MPPA implementation can process high-
definition images at 30 FPS. This implementation uses 18
processors out of a total of 336. Note that 9 processors are
used to implement buffers to align pixels into rows that are
passed to the processors that implement Sobel. All images
are composed of 8-bit pixels. Table 1 summarizes the dif-
ferences between the FPGA and MPAA implementations of
the Sobel algorithm.

4 Ambric MPPA Versus FPGA

As devices, the MPPA and FPGA differ in the following
fundamental ways:

e Granularity in Space: Spatially, the MPPA is more
coarse-grained than an FPGA. Whereas the compu-
tational element of the FPGA is a combinational 5-
or 6-input Look Up Table (LUT) with a 1-bit output,
the computational element of the MPPA is a general-
purpose, 32-bit, sequential processor. Minimum-width
wires are 1-bit wide on FPGAs but are 32-bits wide on
the MPPA.

e Granularity in Time: Temporally, the MPPA is also
more coarse-grained than an FPGA. Temporal granu-
larity refers to how many operations can be performed
during some time unit, e.g., a clock-tick. Due to the

processor-centric nature of the MPPA, the number of
operations that can be performed in a single clock-tick
is fixed. On the FPGA, the number of operations that
can be performed in a clock-tick is completely vari-
able as long as timing is met. For example, on the
MPPA it is possible to perform either an add-operation
or a bit-wise or-operation in a single clock-tick, but not
both. On the FPGA, you would typically be able to do
both operations - packing two operations in a single
clock cycle - as long as timing is met. Being tempo-
rally fine-grained, the FPGA can more finely distribute
operations across clocks to fill each clock period with
as many operations as possible. Fine-grained “operator
packing” of this sort is not possible with instruction-set
Processors.

e Communication: The MPPA provides only one
means of communication: point-to-point, blocking,
32-bit channels that can be used to transmit/receive
data from processors, I/O and memory. FPGAs are far
more flexible and just about any conceivable commu-
nication scheme can be implemented with wires, LUTs
and FFs, at the cost of design time.

e Synchronization: The MPPA provides a single im-
plicit synchronization scheme that is built on top of
the communication channels. Each channel is essen-
tially a 2-element FIFO. Processors stall when reading
an empty channel or when writing to a full channel.
FPGAs support just about any synchronization scheme
at the cost of design time.

4.1 A Simple Example

To understand how MPPA differences impact perfor-
mance, relative to an FPGA, consider the simplified compu-
tation depicted in Figure 4. The computation in the figure
represents part of the Sobel calculation, essentially a subset
of the previously described Ambric implementation. It con-
sists of the computation of the y-gradient for the top-row
of the 3x3 neighborhood. The general dataflow is shown in
part (a) of the figure. Pixel values arrive on the left-hand
side. The top row of 3 pixels is formed as the pixels shift
across the 3 modules along the top (x1, x2, x1) where each
module multiplies its captive pixel value by 1 or 2. (Note
that the middle (x2) module passes the non-modified pixel
value to its module on the right but transmits the multiplied
value to the adder.) Next, these multiplied pixel values are
passed to 2 adder modules to be summed together. The final
value is output from the final adder at the right-hand side of
the figure.

Part (b) of the figure depicts a typical FPGA implemen-
tation of this computation. The three modules have been
replaced with 3 registers (pixel-bit-width). Similar to the

177

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 16:49:25 UTC from IEEE Xplore. Restrictions apply.

Resource Usage | Clocks per pixel | Clock Rate | Frame Rate for 512 x 512 Images
MPPA | 18 processors 7 300 MHz 164
FPGA 113 Slices 1 302 MHz 1148

Table 1. FPGA and MPPA Comparison

: ° a G
‘ ‘ out

(a) General Dataflow

(c) MPPA Implementation

Figure 4. Convolution Fragment

computation shown in part (a), the output of two of the reg-
isters fans out to two places: the next register and the adder.
The x2 is typically implemented in routing as a shift in the
FPGA. Note the addition of a pipeline register on the out-
put of the final adder, also typical for an FPGA implemen-
tation. Assume that all registers are clocked by the same
global clock.

Part (c) of the figure depicts an MPPA implementation
of the same kind used in this study. Each of the circles rep-
resents a single processor in the MPPA. Three of the pro-
cessors perform a simple operation, either an addition or a
multiplication by 2. Two of the processors are used simply
to stage data (those that multiply by 1). Each processor is
annotated with text that represents the I/O operation it per-
forms in addition to is computation. 'R’ stands for “read
from channel” while "W’ stands for “write to channel”. For
example, the processor that implements the first addition

(the left-most adder) must perform 2 reads, one from each
input channel, add the received values together, and write
the result to its output channel - that processor performs a
total of 4 operations.

4.2 Differences and Performance Impact

The following discussion will focus on how differences
between the MPPA and FPGA architectures impact perfor-
mance, relative to the Sobel algorithm.

e Synchronization: In the FPGA example, all registers
are synchronized to a single clock. When a clock-
edge arrives, for example, the additions can commence
operation immediately. With Ambric, each computa-
tional element must explicitly synchronize each value
that is read from a channel. Synchronization for ev-
ery input leads to a much simpler programming model,
but may reduce performance when data can be care-
fully staged so that processors never stall as was done
in this example. Ambric’s synchronization approach
is costly for fine-grained approaches because they tend
to have more I/O and less computation. For this ex-
ample, processors are computing results about 25% of
the time with the remainder used to synchronize and
perform I/0O. The FPGA uses only one synchroniza-
tion event - the clock edge for both reads for this ex-
ample. This works out because the designer manually
staged the data so no stalls would ever be necessary.
However, for less fine-grained approaches, Ambric’s
synchronization strategy should work well because I/O
instructions will represent a smaller percentage of the
computation. In these cases, the costs for explicit syn-
chronization as performed by Ambric will be less, and
possibly neglible.

e Communication: The main difference between an
FPGA and the MPPA, relative to communication, is
fan-out/fan-in. Ambric implements communication
solely as point-to-point channels. Fan-out must be im-
plemented in time. For example, if a processor wants
to send data to n destinations, it must write that data n
times to 1 or more channels (this also enables synchro-
nization). FPGAs can implement fan-out in space or
time. As such, an FPGA can broadcast a value to mul-
tiple destinations in a single clock-tick. However, this
flexibility comes at a heavy cost: the need to achieve

178

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 16:49:25 UTC from IEEE Xplore. Restrictions apply.

timing closure. Similar arguments apply when a pro-
cessor must read multiple values from various sources.

e Granularity: Spatial granularity is mostly related
to area-efficiency. The MPPA should be quite area-
efficient for wider operations, e.g., 32-bit additions.
Temporal granularity, on the other hand, directly re-
lates to performance. For example, on the MPPA, you
can only perform a limited, fixed number of compu-
tations in a clock-tick. Most of the time, the proces-
sors only perform one operation per clock tick though
the Java compiler often combined the addition and
channel-write into one instruction. However, because
the number of operations per clock-tick was predeter-
mined when the device was designed, timing closure is
not a concern. This is a big advantage. All operations
always work at the maximum clock rate. In contrast,
FPGAs can pack multiple computations per clock-tick,
as long as timing is met. This is a mixed blessing; de-
signers can make good use of the entire clock-period
but achieving timing closure is perhaps the most oner-
ous burden associated with FPGA design.

5 Summary

This paper has described an experiment directed at un-
derstanding the relative advantages of FPGAs and MPPAs
for a simple, fine-grained image convolution. In the end,
the FPGA outperformed the Ambric device by about 7x be-
cause the FPGA was better suited to exploit the parallelism
exhibited by the Sobel edge-detection algorithm. In par-
ticular, fine-grained applications like those found in image
processing tend to perform as much (or more) I/O as they
do computation. This puts the Ambric device at a disadvan-
tage because it is a processor-based array and processors
are simply better suited for applications that require more
compute and less I/O.

In the end, most of the FPGA advantage came down to
two things:

e the ability to simultaneously transmit data to many
destinations and to receive data from many sources in
a single clock-tick.

e the ability to pack multiple arithmetic/logic/IO opera-
tions in a single clock-tick.

Combining these two features makes it possible to imple-
ment a read-modify-write with multiple sources and desti-
nations in a single clock-tick. This is what made it rela-
tively easy to achieve a pixel-per-clock throughput rate for
the FPGA.

6 Conclusions and Future Work

Though no match for the raw performance of the FPGA,
the Ambric device provided well over real-time perfor-
mance (164 FPS) for 512x512 images. It should also be
noted that other, more coarse-grained approaches to the So-
bel algorithm could have been tried and may have achieved
better efficiency and throughput, but the scope of this pa-
per was limited to an evaluation of the fine-grained abilities
of the Ambric device. In addition, coarser-grained parallel
approaches such as those that process multiple subtiles of
the image in parallel can be used with the FPGA as well as
the MPPA. As such, we anticipate that due to its ability to
exploit very fine-grained parallelism, the FPGA would still
outperform the MPPA for this algorithm even if coarser-
grained parallelism was exploited. However, it is likely that
coarser-grained approaches would be more space-efficient
for Ambric than the strictly fined-grained approaches that
were used on the MPPA in this paper.

In many ways, this represents a worst-case for the Am-
bric MPPA. The playing field should improve significantly
for the MPPA when it is used to implement algorithms that
contain more compute than I/O and where the arithmetic op-
erations are wider, e.g., 32-bits or more. The FPGA’s abil-
ity to simultaneously transmit/receive data from/to multiple
sources becomes far less important when it occurs less fre-
quently in the application. In addition, the FPGA’s ability
to insert multiple arithmetic operations per clock-tick be-
comes less of an advantage once those operations become
wider and consume most of the clock cycle of the FPGA.

For future work, the authors plan to evaluate the appli-
cability of the MPPA with coarse-grained applications such
beam-forming, etc.

References

[1] M. Butts. Synchronization through Communication in a Mas-
sively Parallel Processor Array. IEEE Micro, 27(5):32-40,
2007.

[2] M. Butts, A. Jones, and P. Wasson. A Structural Object Pro-
gramming Model, Architecture, Chip and Tools for Reconfig-
urable Computing. In Proceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM ’08), pages
55-64, April 2008.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and
K. Skadron. A performance study of general-purpose ap-
plications on graphics processors using cuda. Journal of
Parallel and Distributed Computing, 68(10):1370 — 1380,
2008. General-Purpose Processing using Graphics Process-
ing Units.

[4] B.Hutchings, B. Nelson, S. West, and R. Curtis. Optical Flow
on the Ambric Massively Parallel Processor Array (MPPA).
In Proceedings of the IEEE Symposium on FPGAs for Cus-
tom Computing Machines (FCCM ’09), page to appear, April
2009.

179

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 16:49:25 UTC from IEEE Xplore. Restrictions apply.

