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Abstract—Design Space Exploration is a critical step in chip
design. Unfortunately, it takes significant amounts of time and
resources to explore a fraction of the design space. Herein, we
present a heuristic, evolutionary approach (Genetic Algorithm)
to exploration that significantly cuts down on the time and
resources, obtaining a near optimal design. We demonstrate the
real-world utility of our tool-chain ”CERE” by rapidly and
efficiently designing the cache hierarchy which maximizes the
performance of a web-browser navigating to a set of famous
websites running on a single ARM core. We rapidly traverse
134,136 possible configurations. At about two days per simulation
on the GemS5 full system simulator, the entire space would have
taken 268,272 CPU-Days or ~734 CPU-Years (~3.7 Years on a
cluster of a hundred dual core machines) to brute force search.
”CERE” provided results in ~4.5 days and used ~17.5 CPU-Days
on our cluster. We ran the configurations that “CERE” chose
through gemS5 to verify that “CERE” made the right choices and
we were able to observe a 17.1% speedup going from the “best”
hierarchy relative to the ‘“Worst” hierarchy.

I. INTRODUCTION

As we move into the digital age and get connected more
and more, email, social media, e-commerce, and the Internet
as a whole have become an integrated and integral parts of
our routine in our day-to-day lives. We are connected all
the time with our mobile devices and the ability to search
for information and acquire knowledge on everything we
encounter has never been more. The expectations of mobile
users are to have fast real-time access to information through
their mobile devices’ browsers. Users get frustrated quickly
if the information they are looking for takes more than a
few seconds to load into their web-browser. According to a
survey published by the US Department of Labor [13], the
most commonly reported task for the 77 million workers who
used a computer at work in October 2003 was accessing the
Internet or using e-mail [13]. This means that the web-browser
is one of the most used applications in any computer system
especially in mobile environments. Research has shown that
the average web page loading time experienced by users of
the top 2000 websites is ~10 seconds (median 8.4 seconds).
PhoCusWright [35] market research and industry intelligence
has found recently that the average computer user is often
unwilling to wait for more than three seconds for a web page
to load, with ~57% of users abandoning a web page before
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the four second mark [35]. The performance expectations of
the users can cost loss of business and limit the growth of
e-commerce and other sectors of the mobile digital com-
merce [39]. Architecture designers can adapt the architecture
of the new lines of mobile devices to cater to the users by
improving the performance of browsing the web.

There has been a recent trend in computing with move-
ment towards heterogeneous multi-cores, or more specifically,
weakly heterogeneous multi-cores [40]. They are weakly het-
erogeneous in that they are identical in ISA and most major
microarchitectural features, but vary in some key features. A
key example of this architecture is NVIDIA’s Tegra 3 and the
Tegra 4’s variable SMP architecture [23], [29]. The NVIDIA’s
4-PLUS-1 architecture makes use of four high-power cores and
a separate low-power companion core. The companion core is
used to save on power when the system does not require the
power of all four cores, such as for displaying already-rendered
web-pages. The companion core is nearly identical to the other
cores except that it runs at a much lower frequency and is
made using a special low-power manufacturing process. The
net result is performance equivalent to the high-power quad
cores, but with less net power consumption at a cheaper cost
to build and less silicon requirements [23], [29]. We are driven
here to design the cache hierarchy of a single core of the multi-
cores of a mobile device to specialize in web browsing.

Architectural studies have always relied on cycle-
accurate simulators such as SimpleScalar [5], SESEC [34],
Graphite [27], Simics [25], Gems [26], M5 [11], [12], and
Gem5 [9]. Design space exploration studies have used cycle-
accurate simulators as well [21], [40]. Searching the entire
possible design space is normally prohibitive in terms of the
time and resources it would take to solve such a problem.
Design space exploration studies can be viewed as an opti-
mization problem as we are after the architecture parameters
that optimize the utilization of the silicon area of the chip
to produce the best performance within a reasonable power
budget and with the minimal cost to build the chip. Design
space exploration to be effective and relevant, designers and
researchers have to explore benchmarks that are realistic and
useful in order to derive the next wave of architectures that
will derive architectural research or new released hardware to
the market.
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Genetic Algorithm (GA) [17], [18] is an artificial intelli-
gence technique that is bio-inspired and is used as a search
heuristic. It mimics the process of natural selection. This
heuristic is customarily used to solve optimization and search
problems. Genetic algorithm is an evolutionary algorithm
(EA), which generates solutions to optimization problems
using techniques inspired by natural evolution, such as in-
heritance, mutation, selection, and crossover. Researchers and
engineers have used GA in various fields.

In GA, a population of valid solutions (individuals) to an
optimization problem evolves toward better solutions. Each
possible solution has a set of properties normally called “chro-
mosomes” which can be altered to form newer individuals. The
initial population is randomly generated. In each iteration, (an
iteration is called a generation) the fitness of every individual
in the population is evaluated. The fitness function is normally
chosen as the value of the objective function being optimized.
The better individuals in terms of fitness are stochastically
selected from the current population, and each individual’s
chromosomes are modified via crossover and mutation to form
new individuals and a new generation. The new generation is
used in the next iteration of GA. The algorithm terminates
when either a maximum number of generations (10 generations
in our case) has been reached, or a good enough fitness value
has been achieved before the maximum number of generations
have been reached [17], [18].

Normally, GA can search huge spaces to find an optimal
or near optimal solution to an optimization problem. One of
the challenges of GA is to find a good and suitable fitness
function. In our evaluation of cache hierarchies we use the
average memory access time (AMAT) as the fitness function
for GA. We used cache simulations coupled with CACTI [38],
[41]. CACTI is an integrated cache and memory access time,
cycle time, area, leakage, and dynamic power model. Thus,
CACTI estimates cache access times to determine the AMAT
of a particular cache hierarchy. It requires only ~0.7% of
the time it would take a full system simulation to determine
execution time. It would also require only a few megabytes
of memory compared to the greater than 4 GBs of memory
a full system simulation would require, reducing search time
significantly while utilizing computational resources far more
efficiently.

Hardware design can lend itself to be a very suitable
candidate for GA as the heuristic we can use to determine
the best architecture parameters in an optimization problem.
We formulate our design space optimization problem to be
solved using synergistic harmony of several different tools to
search the huge space we want to explore without spending
excessive time and resources. We utilize GA to efficiently find
the solution to build a specialized general purpose processor
that is optimized for web-browsing. As of submitting this
paper, we know of no user satisfaction-oriented design space
exploration parameter studies that use GA and cycle-accurate
architectural simulators.

The contributions of this paper are as follows:
1)  We specialize the cache hierarchy of a single core
ARM (embedded processor) to be optimized for web
browsing to meet modern day.
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2)  We rely on full system cycle accurate simulations for

verification purposes only.

3)  We are able to explore the design space in a mere 1%
of the time it would have taken to using brute force
search techniques to find the best solution.

4)  We show the utility of GA and AMAT as a fitness

function in design space exploration in a very large
design space.

The rest of this paper is structured as follows: Section II
provides a summary of the most relevant works that our work
builds upon and is most similar to; section III discusses the
methodology used for the generation of simulations and for
the collection and analysis of results; section IV we show and
discuss the results collected for the various architectures, and
section V we summarize the paper’s conclusions.

II. RELATED WORK

This work builds up on the work in [45]. In this paper, we
explore a much larger design space. We depend on Artificial
Intelligence techniques (GA) to efficiently and quickly search
the design space to identify the optimal or near optimal config-
uration for the cache hierarchy. We also dropped using Google
and Craigslist from the websites we run in Bbench [20]. Both
were trivially small compared to the others. In [45], we have
shown that the system performance highly correlates to AMAT
(average difference of 11.54%, standard deviation of 10.92%)
on almost the same set of benchmarks but with a much smaller
design space. The cache simulation takes approximately 15
minutes per configuration on our cluster, with minimal memory
usage, whereas detailed performance simulations take about 2
days each and about 4GB of memory. This represents a 192x
speedup without much loss of accuracy for our purposes. We
rely on this finding in that paper to utilize AMAT as the fitness
function for our GA.

Design Space Exploration (DSE) Studies: Design Space
Exploration is a daunting task. Exploring significant design
spaces using full system simulations is almost impossible.
Some of the previous research involving design space explo-
ration has only looked into the effects of varying only one
parameter, was limited to the running of synthetic benchmarks
(which are of little to no importance to users and user-
satisfaction), and/or testing out new architectural parame-
ters [8], [46]. This shows that research with regards to lever-
aging the full capabilities of performance modeling in modern
architecture simulation infrastructure is not easily doable.
Modern architecture simulators support a lot of interesting
features that allow faithful simulation of the system e.g.full
system simulation (i.e.operating system interactions). This is
especially true with regards to Gem5 [9], the simulator used in
this study. Gem5 has been proven to be accurate enough for our
purposes in this paper [14]. Yet, we recognize the importance
of utilizing these simulator yet we also recognize that it is hard
to do that for significant workloads nor for a lot of design point.

AMAT for DSE: Donald Yeung and his students have
explored the design space for many-core architectures using
their reuse distance profiling framework [43], [44]. In another
study, they used reuse distance profiles to explore the design
of caches for a multi-core processor [42]. The advantage of
this framework is that it does not rely on detailed architectural



simulators to be able to predict the performance under core
count scaling, problem scaling in an architecture agnostic
fashion. In [42], they built a performance prediction model
using AMAT computed from the cache miss rates at each cache
size computed from the reuse distance profiles whether it is
private or shared. In [6], they have used a model similar to the
one in [42] to chose optimizations that require profiling. The
choices made by the reuse distance based model matched with
good accuracy the results obtained from a brute force search
of the possible space using detailed simulations using the M35
simulator.

Our work is similar to theirs in the use of AMAT. We
use AMAT as the fitness function in our GA to explore the
design space. Reuse distance profiles are idealized in how
they compute AMAT. They cannot accurately compute cache
conflicts except through a Qasem and Kennedy cache conflict
model [33]. Also, the effects of cache associatively cannot be
accounted for accurately since reuse distance assumes a fully
associative cache, whereas we use Dinero IV [16] to predict
the cache performance, where cache associativity behavior is
taken into account. One major advantage of the reuse distance
modeling is that with one single run, we can compute the
reuse distance profile showing the entire space for all cache
sizes and using a model we can compute the AMAT at any
given cache design point. On the other hand, we have to run a
separate cache simulation for each cache configuration GA is
considering. We will consider in our future work using reuse
distance profiles to compute the fitness function for GA using
the AMAT model of reuse distance profiles and comparing its
performance to Dinero IV as is in our framework here.

GA for DSE: Genetic Algorithm (GA) has been heavily
used for search and optimization problems. We are not the first
to see the utility of GA for architecture space exploration. It
has been used in many architectural studies. In particular, re-
searchers have used GA for multi-objective design space explo-
ration (DSE) for System-on-Chip (SoC) architectures [3], [30],
for application specific processors (ASP) [37], for system-level
Multi-Processor SoC (MP-SoC) [22], for embedded computer
systems [2], and for multimedia embedded systems [7].

Ascia, Catania, and Palesi [4] have investigated a GA
design space exploration framework for parameterized system-
on-a-chip platforms. They use the Platune simulator. We use
an embedded system processor (ARM), which is more relevant
to the mobile market we are targeting. They only simulate one
level of cache on a MIPS RISC processor running embedded
windows. They also showed result for a VLIW processor which
does have two-levels of cache. Their benchmarks, while valid,
are very small, targeted ones, e.g. jpeg compression, they do
not target a large application like we do (web browser running
real, popular websites). They calculated the Pareto front.

Gordon-Ross, Vahid, and Dutt [19] use a heuristic approach
to tune two-level caches, but they did not use CACTI to
compute the cache latency. They estimate the latency and it
stays constant for different cache configurations. Also, they did
not use a real applications. They do discuss the power savings
that can be had by properly designing the cache levels.
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ARM CPU (1 GHz)
I
[ ]

L1D Cache L1l Cache
4, 8,16, 32, 64, 128 kB 4, 8,16, 32, 64, 128 kB
1,2, 4, 8, 16 -way set associative 1, 2, 4, 8, 16 -way set associative

L2 Cache (Unified)
{0, 128, 256, 512} kB, {1, 2, 4, 8, 16, 32} MB
1, 2, 4, 8, 16 -way set associative

Main Memory
256 MB

Fig. 1: Cache Design Space & configuration.
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Results!
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Simulator

(verifies Results)

Fig. 2: CERE Flow of operation.

I11.

In this section, we discuss the collection of tools we have
synergistically combined to create the framework of “CERE".
We discuss the design space to be explored, the tools, and the
benchmarks we used in this paper. The methodology here is
the same as the methodology used in [45] with the exception
of the GA tools and usage alongside the much larger design
space that we explore here.

METHODOLOGY

A. The Design Space

In this paper, we examine the cache hierarchy design space
for a single arm core. Our goal is to specialize this core to run
the web-browser as efficiently as possible to meet the needs
of the users. We explore a two level cache hierarchy. The L1
cache is a split cache with an instruction L1 cache (IL1) and
a data L1 cache (DL1). The size of each is in powers of two
from 4kB to 128kB. The cache sizes we explore are as follows:
4kB, 8kB, 16kB, 32kB, 64kB, and 128kB (i.e. 6 different sizes



each for IL1 and DL1). The second level cache size is also
in powers of two from 128kB to 32MB. We also include the
case of no second level cache as well. The cache sizes we
explore are as follows: OkB, 128kB, 256kB, 512kB, 1MB,
2MB, 4MB, 8MB, 16MB, and 32MB (i.e. 10 different sizes
for the unified L2 cache). We consider cache associativities
from direct-mapped to 16-way set associative caches with a
factor of 2 increments. Namely, we explore the following cache
associativities 1, 2, 4, 8, and 16 (i.e. 5 associativities for each
of the caches in the system). The associativity of each cache is
independently varied irrespective of the associativity of other
caches in the hierarchy. This cache design space represents
a total of 33,534 possible unique cache configurations that
are to be explored either exhaustively or through heuristics.
Note that associativity does not matter at all with a 0kB L2
cache. Figure | shows the architecture being simulated and
the different parameters for each cache. Note that when the
L2 cache size is OkB, this means that we will not have an
L2 cache in the system and the L1 caches will be connected
directly to the main memory of the system.

B. The simulation Infrastructure

We use Gemb5, a full system simulator [9], [10] that runs a
full fledged operating system. Our simulations were run on the
ARM CPU architecture provided by Gem5 running Android
OS 2.3 (Gingerbread) and the native browser provided therein.
Simulations were carried out using the detailed model, which
models a modern, Out-of-Order ARM processor core running
at 1 GHz core frequency [36]. We chose ARM due to ifts
greater than 95% dominance in the smartphone market, 10% in
Mobile Computers, and 35% in digital TVs and set-top boxes
as of 2010 [28]. Android OS 2.3 (Gingerbread) is used for
several reasons. Currently it is the second most used Android
OS in the market. It is running on 19% of the devices running
Android [1]. Android’s market share is 75% of all smartphones
worldwide [24]. Furthermore, Android 2.3 (Gingerbread) is
the most stable Android OS that we were able to run on the
simulator (GemS5). The Android 3.X (Ice Cream Sandwich) is
not as stable on Gem5. We do not expect the results nor the
conclusions will change if we use a different version of the
Android OS.

Figure ” outlines the flow among the different tools we use
in this paper. We use Gem3 for several purposes. Gem5 pro-
vides a detailed full system Android over ARM architectural
simulation. It runs the Bbench web-browsing benchmarks [20].
GemS5 generates the memory traces for each of the websites
we run from the Bbench suite. These memory traces are
fed through a preprocessing Perl script to make the trace
usable by Dinero IV [16]. We use the PyEvolve open-source
evolutionary framework which provides us with a generic
extensible framework for GA implementation [31], [32].

The major part of what GA needs is the fitness function
which is used to determine how fit the individuals relative
to each other. We use AMAT as the fitness function as we
have explained in Section Il and as Figure ® suggests. We
will explain this figure more in the next section. Dinero IV
generates the cache statistics such as miss rates efc. for each
cache hierarchy that the GA framework considers. To compute
a realistic AMAT value, we need to compute accurately the
access latency for each cache the framework considers. We use
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CACTI [38], [4]] to determine the latency for accessing each
cache hierarchy that GA considers. Note that, the individuals
in each generation are not different all the time. A non-frivial
number of individuals will be the same across generations.
For these individuals, we do not need to run neither the
cache simulation, the CACTI computation, nor the fitness
function computation which would cut significantly on the
computational time to find the optimal solution on top of the
savings we obtain from not having to exhaustively search the
entire space nor to use Gem3 to evaluate fitness.

The cycle of GA, Dinero IV and CACTI repeat until a
stopping condition is reached. The stopping condition is either
reaching a maximum number of generations or reaching a
satisfactory solution. Gem5 is used to run a handful of full
system simulations to verify the performance of the selected
best designs.

o9

o8

o7

06

05 i

Fig. 3: Comparing Normalized AMAT to Normalized Render
Time of Websites.

TABLE L RANKING OF BENCHMARK WEBSITES ON ALEXA.COM

GLOBALLY, IN THE US AND AMONG THE TOP 500

Website || Amazon | Ebay | MSN [ Twitter ||

Global Rank 12 24 33 8
US Rank 5 8 25 9
Top 500 10 22 34 8

The parameters of GA that we used in this study are as
follows:

1) Rank Selection:
There are many methods for selecting the best in-
dividuals, for example rank selection, roulette wheel
selection, Boltzman selection, tournament selection,
elitism, and some others [18]. Rank selection works
by first ranking the population and then every indi-
vidual receives fitness from the ranking. The worst
will have fitness 1, second worst 2 efc. and the best
will have fitness N (equal to number of individuals in
the population). All individuals will have a chance to
be selected. We chose this selection methods because
of that. But this method can suffer from slower
convergence;



2)  Number of Generations is 10;

3)  Number of individuals per generation is 60;
4)  Mutation Rate is 10%
Mutation is a genetic operator used to maintain
genetic diversity from one generation to the next [18].
5)  Crossover rate is 90%.

Crossover is a genetic operator used to vary the pro-
gramming of a chromosome or chromosomes from
one generation to the next [18].

In trying to find what parameters to use GA, we resorted to
using what other researchers have used in prior works that used
GA. We increased the number of individuals per generation
from 50 to 60 to be more conservative.

C. Benchmarks

Bbench was chosen because it is a fully self-contained
web-rendering benchmark that represents many of the popular
websites existing today [20]. Of the sites in Bbench, we chose
to run Amazon, eBay, MSN, and Twitter, which are number
10, 22, 34, and 8 respectively on Alexa.com’s top 500 list of
the world’s most popular websites in the past three month as of
April 2014. Table I shows the ranking of each of the websites
we run globally, in the US, and among the top 500 most visited
websites. These websites represented a good cross-section of
the type of websites available on the web representing E-
commerce, news, and social media.

Due to the fact that the results of Bbench are generated
in-browser and due to sandboxing of the Android browser for
security reasons, the results could only be gathered through
analyzing the simulator’s snapshots of the frame buffer out-
put. This necessitate using some automation techniques to
determine the render time of each website. We use the same
methodology as in [45] to acquire the results.

With 4 benchmarks (4 websites), the whole space evaluated
comes to 33,534 x 4 (i.e. 134,136) potential data points. At
about 2 days per simulation, this would have take 268,272
CPU-Days or ~734 CPU-Years (~3.7 Years on a 100 node
dual core cluster) to get the full simulation results for the entire
space.

IV. EXPERIMENTAL RESULTS

In this section, we will present the results. We will quantify
the advantages that GA achieves. We will compare that the
estimated time of exploration of the space using brute force
methods and the evolutionary techniques presented here.

AMAT correlation to Performance:

While AMAT and fitness scores (fitness score is derived from
AMAT) are not perfect estimators of runtime, we will show
below that they are a very reasonable estimator for the system
runtime to chose among different cache hierarchies. AMAT can
be a fair comparison point between competing architectures
especially when the caches are the major difference between
the architectures.

-

Figure 3 shows the relative performance of normalized
AMAT in comparison to normalized render times for the
Bbench websites and the cache hierarchy design space of [45].
The system performance is highly correlated to AMAT. This
graph shows an average difference of 11.54% with a standard
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deviation of 10.92%. We rely on this result as the basis for
using AMAT as the fitness function for the GA framework
to save us time without sacrificing a lot on the accuracy
of the estimates of performance it represents. Note that we
intentionally eliminated the legends on the X-axis of the figure
in order to display the graph but it would look like the X-axis
of Figures 5 and 6.

Raw score Min/Avg/Max

s T SN, SO
c{) ki 2 3 4 5 6 7 8 9
Generation (#)

Fig. 4: GA Raw Fitness Minimum, Maximum, and Average
for each Generation.

GA Results:

Figure 4 shows a snapshot of the 10 GA populations we
ran. It shows that moving from generation O to 9, average
scaled population fitness went from 0.93 to 0.15 (lower is
better). Additionally, the worst 5 individuals in history existed
in generation O (initial population). The best 5 individuals
existed in generations 4, 5, and 6. The gene pool slightly
worsened after generation 6. This is blamed on a combination
of mutations and some poor selections. We could bias the
selection process by forcing the best individuals from this
generation to transfer through to the next generation. This is
known in the literature for GA as elitism in selection [15].

Figure 5 shows the performance results of the best five in-
dividuals and the worst five individuals that GA examined. Due
to the fact that GA evaluates each individual according to the
fitness function used which is AMAT in this work, we notice
in this figure that the top five “Best” and “Worst” architectures
are not exactly ordered according to their performance. They
are ordered according to how GA sees their respective fitness
values. The X-axis of Figures 5 and 6 encode the architecture
parameters for the cache being simulated as follows: “IL1
Cache Size” : “IL1 Associativity” : “DL1 Cache Size” : “DL1
Associativity” : “L2 Cache Size” : “L2 Associativity”.

The results reported in Figure 5 are our verification data
that GA really picks good choices and can identify the best
hierarchies even though it never ran any full system simula-
tions. In general, the top 5 individuals performed fairly better
than the worst 5 individuals when evaluated using the Gem5
simulator. The average runtime of the 5 individuals with the
worst fitness was 1950.95ms and the average of the best 5
individuals was 1813ms, giving an average of 6.5% decrease
in runtime, the true worst runtime to true best runtime of
the Gem5 simulations was 2661ms to 2206ms for a 20.6%



decrease in runtime. We also note that the top choice of GA is
really the 2nd best choice and it is within less than 2.2% of the
true best runtime. It is also interesting that the best performing
architecture among the worst architectures according to GA
would rank fourth among top 5 best architectures. Among the
best 5 architectures, the best and worst architectures are within
less than 10% of each other. Likewise, among the top worst 5
architectures, the best and worst among them are within 12%
of each other.

There are some very interesting observations. First, the top
5 best architectures share the L2 cache size of 128kB which is
basically, the smallest non-zero L2 cache size that we examine
in our design space. This suggests that the web-browser does
benefit from an L2 cache but it does not require the biggest
cache. It rather benefits more from a smaller and faster cache
at the L2 level. Second, we observe that the associativity of
L1 caches both instruction and data (IL1 and DL1) is fixed
at one. The best level first level caches for our web-browser
workloads are direct mapped caches. Third, we observe that
the first level data caches are kept constant in size at 4kB direct
mapped cache for all the top 5 best architectures. The first level
instruction caches though varied from 4kB to 16kB but the top
three best architectures were all fixed at 16kB direct mapped
ILL

Another way to think of these results and put them in
perspective is that the top three best architecture are of the
exact same hierarchy except for the associativity at the L2
cache where it varied from direct mapped to 2-way to 4-way
set associative caches. The hierarchy was configured with a
16kB IL1 direct mapped first level instruction cache, a 4kB
DL1 direct mapped first level data cache, and a 128kB L2
cache and the associativity of the L2 cache varied from direct
mapped to 2-way to 4-way set associative caches.

Figure 6 shows the performance results of the five best and
five worst individuals similar to Figure 5 with the addition of
a set of four design points that represent some intuitive cache
hierarchies. We chose design points with maximum cache sizes
for each cache level (128kB IL1, 128kB DLI1, and 32MB
L2) to represent the conventional wisdom of bigger is better.
We chose three cache associativities of 1 (i.e. direct mapped
caches), 8, and 16 (i.e.maximum associativity simulated in
this study) for all levels of cache. This gives us three design
sizes with the maximum possible cache size that are direct
mapped, with 8 and 16 associativities respectively. From the
results in [45] we chose to use the case with no L2 cache ie.
0 bytes of L2 cache and the smallest L1 instruction and data
caches since these would hypothetically represent the fastest
caches to access especially with direct mapped associativity.
We note that the no L2 cache is not a good solution at all
counter to the conclusions in [45]. This particular no L2 cache
design point is ~40% worse than the best design point. We
also note that the largest caches that we considered here even
though they did not compete on the best cache designs yet the
best among them is only ~13% worse than the best design
point overall.

Our tool-chain “CERE” provides results in ~4.5 days. It
used ~17.5 CPU-Days. The breakdown of this time is as
follows: a two day period for Gem5 simulations, half a day
for running GA and evaluating an individual’s fitness takes
~20 minutes. Multiple evaluations can be simultaneously ob-
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tained on multi-core machines with little additional overhead.
We use previously computed fitness evaluations for repeated
architectures to save even more time. Also, we have to add at
the beginning of all of this work the time it takes to run Gem5
to obtain the memory traces for each Bbench website we run.
We have to note that this is a one-time cost that does not
repeat and fortunately, it is independent of the cache hierarchy
parameters and is only application specific.

Allin all, “CERE” evaluated 212 unique architectures. This
represents a mere 0.63% of the entire design space we have
considered. Simulating these 212 architectures would have
taken ~1696 CPU-Days or ~4.7 CPU-years. Unless, we have
a huge server farm, we cannot investigate this design space
via full system simulations to provide the fitness evaluation.
The heuristic approach have given us a reduction in resources
required of about 99% without sacrifice on accuracy or quality
of the solution.
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GA predicted.
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V. CONCLUSIONS & FUTURE WORK

We have presented an evolutionary framework and a tool-
chain “CERE” that can explore a huge design space composed
of thousands of design possibilities while skipping the lengthy
and costly full system architectural simulation. We use a mere
1% of the resources that we would have used if we did not
use AMAT as the fitness function for GA. “CERE” allowed us
to examine less than 1% of the design points that we would
have otherwise needed to examine exhaustively. The “CERE”
computed best architectural choice for the cache hierarchy
design performed within 2% of the true best choice. We can
safely conclude that bigger is not always better. We also
can safely conclude that cache hierarchy cycle times that are
commonly used in architectural studies that are not computed
using CACTI can lead to potentially inaccurate and unrealistic
results.

By all means, we have looked at a small design space
even though the design space is comprised of more than
134,000 possible design points. In the future, we would be
interested in looking at a much larger space by including
more benchmarks, larger design space and using reuse distance
profiles to estimate the AMAT instead of using Dinero IV
cache simulations.

We would also be interested in Parallel GA algorithm
variations which would cut on the time it takes to run GA and
thus we can afford to run it for a larger number of generations
and larger population size. We would also consider designs
of multi-core cache hierarchies for embedded as well as non-
embedded systems. Also, a direct extension of this work is to
consider the web-browser benchmarks (Bbench) behavior on
desktop and laptop systems and use that to drive the design of
the cache hierarchies for such systems.

We think that we should do a sensitivity study on how the
accuracy of the solutions predicted using GA would change
with changes in the GA parameters. Also, we might look into
finding the optimal solution for the particular problem and
find how close or far is our GA predicted solution to the
real optimal solution. This might take too long since it would
require exhaustively running full system simulations for all
design points.

We believe that using the power consumption estimates,
that CACTI emits with the latency statistics of each cache
hierarchy, as another objective optimization function with the
performance numbers can lead to better design choices. We can
optimize for the Energy Delay product or the Energy Delay
Squared product as the fitness function for GA.
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