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Abstract—Design Space Exploration is a critical step in chip
design. Unfortunately, it takes significant amounts of time and
resources to explore a fraction of the design space. Herein, we
present a heuristic, evolutionary approach (Genetic Algorithm)
to exploration that significantly cuts down on the time and
resources, obtaining a near optimal design. We demonstrate the
real-world utility of our tool-chain ”CERE” by rapidly and
efficiently designing the cache hierarchy which maximizes the
performance of a web-browser navigating to a set of famous
websites running on a single ARM core. We rapidly traverse
134,136 possible configurations. At about two days per simulation
on the Gem5 full system simulator, the entire space would have
taken 268,272 CPU-Days or �734 CPU-Years (�3.7 Years on a
cluster of a hundred dual core machines) to brute force search.
”CERE” provided results in �4.5 days and used �17.5 CPU-Days
on our cluster. We ran the configurations that “CERE” chose
through gem5 to verify that “CERE” made the right choices and
we were able to observe a 17.1% speedup going from the “best”
hierarchy relative to the “Worst” hierarchy.

I. INTRODUCTION

As we move into the digital age and get connected more
and more, email, social media, e-commerce, and the Internet
as a whole have become an integrated and integral parts of
our routine in our day-to-day lives. We are connected all
the time with our mobile devices and the ability to search
for information and acquire knowledge on everything we
encounter has never been more. The expectations of mobile
users are to have fast real-time access to information through
their mobile devices’ browsers. Users get frustrated quickly
if the information they are looking for takes more than a
few seconds to load into their web-browser. According to a
survey published by the US Department of Labor [13], the
most commonly reported task for the 77 million workers who
used a computer at work in October 2003 was accessing the
Internet or using e-mail [13]. This means that the web-browser
is one of the most used applications in any computer system
especially in mobile environments. Research has shown that
the average web page loading time experienced by users of
the top 2000 websites is �10 seconds (median 8.4 seconds).
PhoCusWright [35] market research and industry intelligence
has found recently that the average computer user is often
unwilling to wait for more than three seconds for a web page
to load, with �57% of users abandoning a web page before

the four second mark [35]. The performance expectations of
the users can cost loss of business and limit the growth of
e-commerce and other sectors of the mobile digital com-
merce [39]. Architecture designers can adapt the architecture
of the new lines of mobile devices to cater to the users by
improving the performance of browsing the web.

There has been a recent trend in computing with move-
ment towards heterogeneous multi-cores, or more specifically,
weakly heterogeneous multi-cores [40]. They are weakly het-
erogeneous in that they are identical in ISA and most major
microarchitectural features, but vary in some key features. A
key example of this architecture is NVIDIA’s Tegra 3 and the
Tegra 4’s variable SMP architecture [23], [29]. The NVIDIA’s
4-PLUS-1 architecture makes use of four high-power cores and
a separate low-power companion core. The companion core is
used to save on power when the system does not require the
power of all four cores, such as for displaying already-rendered
web-pages. The companion core is nearly identical to the other
cores except that it runs at a much lower frequency and is
made using a special low-power manufacturing process. The
net result is performance equivalent to the high-power quad
cores, but with less net power consumption at a cheaper cost
to build and less silicon requirements [23], [29]. We are driven
here to design the cache hierarchy of a single core of the multi-
cores of a mobile device to specialize in web browsing.

Architectural studies have always relied on cycle-
accurate simulators such as SimpleScalar [5], SESEC [34],
Graphite [27], Simics [25], Gems [26], M5 [11], [12], and
Gem5 [9]. Design space exploration studies have used cycle-
accurate simulators as well [21], [40]. Searching the entire
possible design space is normally prohibitive in terms of the
time and resources it would take to solve such a problem.
Design space exploration studies can be viewed as an opti-
mization problem as we are after the architecture parameters
that optimize the utilization of the silicon area of the chip
to produce the best performance within a reasonable power
budget and with the minimal cost to build the chip. Design
space exploration to be effective and relevant, designers and
researchers have to explore benchmarks that are realistic and
useful in order to derive the next wave of architectures that
will derive architectural research or new released hardware to
the market.
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Genetic Algorithm (GA) [17], [18] is an artificial intelli-
gence technique that is bio-inspired and is used as a search
heuristic. It mimics the process of natural selection. This
heuristic is customarily used to solve optimization and search
problems. Genetic algorithm is an evolutionary algorithm
(EA), which generates solutions to optimization problems
using techniques inspired by natural evolution, such as in-
heritance, mutation, selection, and crossover. Researchers and
engineers have used GA in various fields.

In GA, a population of valid solutions (individuals) to an
optimization problem evolves toward better solutions. Each
possible solution has a set of properties normally called “chro-
mosomes” which can be altered to form newer individuals. The
initial population is randomly generated. In each iteration, (an
iteration is called a generation) the fitness of every individual
in the population is evaluated. The fitness function is normally
chosen as the value of the objective function being optimized.
The better individuals in terms of fitness are stochastically
selected from the current population, and each individual’s
chromosomes are modified via crossover and mutation to form
new individuals and a new generation. The new generation is
used in the next iteration of GA. The algorithm terminates
when either a maximum number of generations (10 generations
in our case) has been reached, or a good enough fitness value
has been achieved before the maximum number of generations
have been reached [17], [18].

Normally, GA can search huge spaces to find an optimal
or near optimal solution to an optimization problem. One of
the challenges of GA is to find a good and suitable fitness
function. In our evaluation of cache hierarchies we use the
average memory access time (AMAT) as the fitness function
for GA. We used cache simulations coupled with CACTI [38],
[41]. CACTI is an integrated cache and memory access time,
cycle time, area, leakage, and dynamic power model. Thus,
CACTI estimates cache access times to determine the AMAT
of a particular cache hierarchy. It requires only �0.7% of
the time it would take a full system simulation to determine
execution time. It would also require only a few megabytes
of memory compared to the greater than 4 GBs of memory
a full system simulation would require, reducing search time
significantly while utilizing computational resources far more
efficiently.

Hardware design can lend itself to be a very suitable
candidate for GA as the heuristic we can use to determine
the best architecture parameters in an optimization problem.
We formulate our design space optimization problem to be
solved using synergistic harmony of several different tools to
search the huge space we want to explore without spending
excessive time and resources. We utilize GA to efficiently find
the solution to build a specialized general purpose processor
that is optimized for web-browsing. As of submitting this
paper, we know of no user satisfaction-oriented design space
exploration parameter studies that use GA and cycle-accurate
architectural simulators.

The contributions of this paper are as follows:

1) We specialize the cache hierarchy of a single core
ARM (embedded processor) to be optimized for web
browsing to meet modern day.

2) We rely on full system cycle accurate simulations for
verification purposes only.

3) We are able to explore the design space in a mere 1%
of the time it would have taken to using brute force
search techniques to find the best solution.

4) We show the utility of GA and AMAT as a fitness
function in design space exploration in a very large
design space.

The rest of this paper is structured as follows: Section II
provides a summary of the most relevant works that our work
builds upon and is most similar to; section III discusses the
methodology used for the generation of simulations and for
the collection and analysis of results; section IV we show and
discuss the results collected for the various architectures, and
section V we summarize the paper’s conclusions.

II. RELATED WORK

This work builds up on the work in [45]. In this paper, we
explore a much larger design space. We depend on Artificial
Intelligence techniques (GA) to efficiently and quickly search
the design space to identify the optimal or near optimal config-
uration for the cache hierarchy. We also dropped using Google
and Craigslist from the websites we run in Bbench [20]. Both
were trivially small compared to the others. In [45], we have
shown that the system performance highly correlates to AMAT
(average difference of 11.54%, standard deviation of 10.92%)
on almost the same set of benchmarks but with a much smaller
design space. The cache simulation takes approximately 15
minutes per configuration on our cluster, with minimal memory
usage, whereas detailed performance simulations take about 2
days each and about 4GB of memory. This represents a 192x
speedup without much loss of accuracy for our purposes. We
rely on this finding in that paper to utilize AMAT as the fitness
function for our GA.

Design Space Exploration (DSE) Studies: Design Space
Exploration is a daunting task. Exploring significant design
spaces using full system simulations is almost impossible.
Some of the previous research involving design space explo-
ration has only looked into the effects of varying only one
parameter, was limited to the running of synthetic benchmarks
(which are of little to no importance to users and user-
satisfaction), and/or testing out new architectural parame-
ters [8], [46]. This shows that research with regards to lever-
aging the full capabilities of performance modeling in modern
architecture simulation infrastructure is not easily doable.
Modern architecture simulators support a lot of interesting
features that allow faithful simulation of the system e.g. full
system simulation (i.e.operating system interactions). This is
especially true with regards to Gem5 [9], the simulator used in
this study. Gem5 has been proven to be accurate enough for our
purposes in this paper [14]. Yet, we recognize the importance
of utilizing these simulator yet we also recognize that it is hard
to do that for significant workloads nor for a lot of design point.

AMAT for DSE: Donald Yeung and his students have
explored the design space for many-core architectures using
their reuse distance profiling framework [43], [44]. In another
study, they used reuse distance profiles to explore the design
of caches for a multi-core processor [42]. The advantage of
this framework is that it does not rely on detailed architectural
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2) Number of Generations is 10;
3) Number of individuals per generation is 60;
4) Mutation Rate is 10%

Mutation is a genetic operator used to maintain
genetic diversity from one generation to the next [18].

5) Crossover rate is 90%.
Crossover is a genetic operator used to vary the pro-
gramming of a chromosome or chromosomes from
one generation to the next [18].

In trying to find what parameters to use GA, we resorted to
using what other researchers have used in prior works that used
GA. We increased the number of individuals per generation
from 50 to 60 to be more conservative.

C. Benchmarks

Bbench was chosen because it is a fully self-contained
web-rendering benchmark that represents many of the popular
websites existing today [20]. Of the sites in Bbench, we chose
to run Amazon, eBay, MSN, and Twitter, which are number
10, 22, 34, and 8 respectively on Alexa.com’s top 500 list of
the world’s most popular websites in the past three month as of
April 2014. Table I shows the ranking of each of the websites
we run globally, in the US, and among the top 500 most visited
websites. These websites represented a good cross-section of
the type of websites available on the web representing E-
commerce, news, and social media.

Due to the fact that the results of Bbench are generated
in-browser and due to sandboxing of the Android browser for
security reasons, the results could only be gathered through
analyzing the simulator’s snapshots of the frame buffer out-
put. This necessitate using some automation techniques to
determine the render time of each website. We use the same
methodology as in [45] to acquire the results.

With 4 benchmarks (4 websites), the whole space evaluated
comes to 33, 534 × 4 (i.e.134, 136) potential data points. At
about 2 days per simulation, this would have take 268,272
CPU-Days or �734 CPU-Years (�3.7 Years on a 100 node
dual core cluster) to get the full simulation results for the entire
space.

IV. EXPERIMENTAL RESULTS

In this section, we will present the results. We will quantify
the advantages that GA achieves. We will compare that the
estimated time of exploration of the space using brute force
methods and the evolutionary techniques presented here.

AMAT correlation to Performance:
While AMAT and fitness scores (fitness score is derived from
AMAT) are not perfect estimators of runtime, we will show
below that they are a very reasonable estimator for the system
runtime to chose among different cache hierarchies. AMAT can
be a fair comparison point between competing architectures
especially when the caches are the major difference between
the architectures.

Figure 3 shows the relative performance of normalized
AMAT in comparison to normalized render times for the
Bbench websites and the cache hierarchy design space of [45].
The system performance is highly correlated to AMAT. This
graph shows an average difference of 11.54% with a standard

deviation of 10.92%. We rely on this result as the basis for
using AMAT as the fitness function for the GA framework
to save us time without sacrificing a lot on the accuracy
of the estimates of performance it represents. Note that we
intentionally eliminated the legends on the X-axis of the figure
in order to display the graph but it would look like the X-axis
of Figures 5 and 6.

Fig. 4: GA Raw Fitness Minimum, Maximum, and Average
for each Generation.

GA Results:
Figure 4 shows a snapshot of the 10 GA populations we
ran. It shows that moving from generation 0 to 9, average
scaled population fitness went from 0.93 to 0.15 (lower is
better). Additionally, the worst 5 individuals in history existed
in generation 0 (initial population). The best 5 individuals
existed in generations 4, 5, and 6. The gene pool slightly
worsened after generation 6. This is blamed on a combination
of mutations and some poor selections. We could bias the
selection process by forcing the best individuals from this
generation to transfer through to the next generation. This is
known in the literature for GA as elitism in selection [15].

Figure 5 shows the performance results of the best five in-
dividuals and the worst five individuals that GA examined. Due
to the fact that GA evaluates each individual according to the
fitness function used which is AMAT in this work, we notice
in this figure that the top five “Best” and “Worst” architectures
are not exactly ordered according to their performance. They
are ordered according to how GA sees their respective fitness
values. The X-axis of Figures 5 and 6 encode the architecture
parameters for the cache being simulated as follows: “IL1
Cache Size” : “IL1 Associativity” : “DL1 Cache Size” : “DL1
Associativity” : “L2 Cache Size” : “L2 Associativity”.

The results reported in Figure 5 are our verification data
that GA really picks good choices and can identify the best
hierarchies even though it never ran any full system simula-
tions. In general, the top 5 individuals performed fairly better
than the worst 5 individuals when evaluated using the Gem5
simulator. The average runtime of the 5 individuals with the
worst fitness was 1950.95ms and the average of the best 5
individuals was 1813ms, giving an average of 6.5% decrease
in runtime, the true worst runtime to true best runtime of
the Gem5 simulations was 2661ms to 2206ms for a 20.6%
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V. CONCLUSIONS & FUTURE WORK

We have presented an evolutionary framework and a tool-
chain “CERE” that can explore a huge design space composed
of thousands of design possibilities while skipping the lengthy
and costly full system architectural simulation. We use a mere
1% of the resources that we would have used if we did not
use AMAT as the fitness function for GA. “CERE” allowed us
to examine less than 1% of the design points that we would
have otherwise needed to examine exhaustively. The “CERE”
computed best architectural choice for the cache hierarchy
design performed within 2% of the true best choice. We can
safely conclude that bigger is not always better. We also
can safely conclude that cache hierarchy cycle times that are
commonly used in architectural studies that are not computed
using CACTI can lead to potentially inaccurate and unrealistic
results.

By all means, we have looked at a small design space
even though the design space is comprised of more than
134,000 possible design points. In the future, we would be
interested in looking at a much larger space by including
more benchmarks, larger design space and using reuse distance
profiles to estimate the AMAT instead of using Dinero IV
cache simulations.

We would also be interested in Parallel GA algorithm
variations which would cut on the time it takes to run GA and
thus we can afford to run it for a larger number of generations
and larger population size. We would also consider designs
of multi-core cache hierarchies for embedded as well as non-
embedded systems. Also, a direct extension of this work is to
consider the web-browser benchmarks (Bbench) behavior on
desktop and laptop systems and use that to drive the design of
the cache hierarchies for such systems.

We think that we should do a sensitivity study on how the
accuracy of the solutions predicted using GA would change
with changes in the GA parameters. Also, we might look into
finding the optimal solution for the particular problem and
find how close or far is our GA predicted solution to the
real optimal solution. This might take too long since it would
require exhaustively running full system simulations for all
design points.

We believe that using the power consumption estimates,
that CACTI emits with the latency statistics of each cache
hierarchy, as another objective optimization function with the
performance numbers can lead to better design choices. We can
optimize for the Energy Delay product or the Energy Delay
Squared product as the fitness function for GA.
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