
CCMT

CCMT

Behavioral Emulation
for Scalable Design-Space Exploration

of Algorithms and Architectures

Nalini Kumar (PhD Candidate),

Carlo Pascoe, Chris Hajas, Herman Lam, Greg Stitt, and Alan George

PSAAP II Center for Compressible Multiphase Turbulence (CCMT)

NSF Center for High-Performance Reconfigurable Computing (CHREC)

ECE Department, University of Florida, Gainesville FL, USA

E-MuCoCoS 2016 (Co-located with ISC), Frankfurt, Germany

CCMT
| 22016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Outline

 The Big Picture – Modeling and Simulation for Co-design

 Our M&S approach – Behavioral Emulation

– Overview and Workflow of Behavioral Emulation

 Modeling

– What are we modeling? What are the independent parameters?

– Building the models and model representations!

– Measurements (what does our data look like?)

 Simulation

– Step 1: Combining the models together

– Step 2: Validation (not leave one out!) of individual block models

 Prediction: Finally what we wanted all along!

– Design Space Exploration

– Probabilistic simulations

 Conclusions & Future Directions

CCMT
| 32016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Outline

 The Big Picture – Modeling and Simulation for Co-design

 Our M&S approach – Behavioral Emulation

– Overview and Workflow of Behavioral Emulation

 Modeling

– What are we modeling? What are the independent parameters?

– Building the models and model representations!

– Measurements (what does our data look like?)

 Simulation

– Combining the models together

– Validation

 Prediction: Finally what we wanted all along!

– Design Space Exploration

– Probabilistic simulations

 Conclusions & Future Directions

CCMT
| 42016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

The Big Picture

 CCMT Center Goals:

 To radically advance the field of Compressible Multiphase Turbulence (CMT)

 To advance predictive simulation science on current and near-future computing
platforms with uncertainty budget as backbone

 To advance a co-design strategy that combines exascale emulation, exascale
algorithms, exascale CS

CMT-nek simulations

CCMT
| 52016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Our Co-design Problem

 Our challenge is to develop a scalable high-performance software

 What are the most likely productive execution models?

 What is the measurable benefit of switching from MPI-only to MPI+X?

 Will it be considerable effort to optimize key kernels for each platform?

 How can we better decompose the app to maximize the benefit from next-
gen architectures and technologies (especially memories)?

 Also, pareto-optimization for high performance and low energy

 We don’t have the devices for experimentation

 Need simulation and emulation to help analyze different design
tradeoffs – algorithm and architecture design space exploration (DSE)

cycles of
^

CCMT
| 62016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Motivation: Large CMT-nek Design Space

Parametric Options – minimal changes to inputs & BE methods

 h-refinement vs p-refinement of CMT-nek

 Number of computational particles per cell

 Order of accuracy of Euler-Lagrange interpolation/back-coupling

Algorithmic Options – require building models for new algorithms

 Shock capturing methodology (hyperviscosity vs p-refinement)

 Euler-to-Lagrange interpolation algorithm (accuracy vs efficiency)

 Lagrange-to-Euler back-coupling algorithm

 Crystal router vs other data-communication for computational particles

 Immersed boundary vs immersed interface vs ghost fluid

Architectural Options – require models for each algorithm/arch. pair

 GPU-CPU implementation of Lagrangian particles

 GPU-CPU workload partition

Other Design Space Options

 Domain partitioning (pencil vs sheets vs blocks)

 Focusing computational power to where needed

Developed in collaboration with CMT-nek development team

CCMT
| 72016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Our M&S Approach – Behavioral Emulation

 How may we study Exascale before the age of Exascale?

 Analytical studies – systems are too complicated

 Software simulation – simulations are too slow at scale

 Functional emulation – systems too massive and complex

 Prototype device – future technology, does not exist

 Prototype system – future technology, does not exist

 Many pros and cons with various methods

 We believe behavioral emulation is most promising in terms of balance of DSE
goals (accuracy, speed, and scalability, as well as versatility)

 Scope and contribution of this paper:

 Develop methods and confidence in BE

 Prototype and validate BEO models and simulation framework which is
essential before optimizing framework for speed and scale

 Gain insight into abstraction and representation of application behavior

 Demonstrate the use of BE for early design space exploration

CCMT
| 82016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Outline

 The Big Picture – Modeling and Simulation for Co-design

 Our M&S approach – Behavioral Emulation

– Overview and Workflow of Behavioral Emulation

 Modeling

– What are we modeling? What are the independent parameters?

– Building the models and model representations!

– Measurements (what does our data look like?)

 Simulation

– Combining the models together

– Validation

 Prediction: Finally what we wanted all along!

– Design Space Exploration

– Probabilistic simulations

 Conclusions & Future Directions

CCMT
| 92016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Key Features of Behavioral Emulation (BE)

 Component-based simulation

 Fundamental constructs called BE Objects (BEOs) act as surrogates

 BEOs characterize & represent behavior of app, device, node, & system objects as
fabrics of interconnected ArchBEOs (with AppBEOs)

 Multi-scale simulation

 Hierarchical method based upon experimentation, abstraction, exploration

 Multi-objective simulation

 Performance, power, reliability, and other environmental factors

 Our challenge is to develop a scalable high-performance software

N. Kumar, A. George, H. Lam, G. Stitt, S. Hammond, “Understanding Performance and Reliability Trade-offs for Extreme-scale

Systems using Behavioral Emulation”, Workshop on Modeling & Simulation of Systems and Applications (ModSim 2015)

CCMT
| 102016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Co-Design Using Behavioral Emulation

UQ

team

* BEO – Behavioral Emulation Object

CMT-nek

team

CS team

CS team

CMT-nek

team

UQ team

Coarse-grained

Simulation Platforms

CCMT
| 112016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Outline

 The Big Picture – Modeling and Simulation for Co-design

 Our M&S approach – Behavioral Emulation

– Overview and Workflow of Behavioral Emulation

 Modeling

– What are we modeling? What are the independent parameters?

– Building the models and model representations!

– Measurements (what does our data look like?)

 Simulation

– Combining the models together

– Validation

 Prediction: Finally what we wanted all along!

– Design Space Exploration

– Probabilistic simulations

 Conclusions & Future Directions

CCMT
| 122016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Application Models: AppBEOs

 Representation of applications that simulator can understand

 AppBEOs are list of instructions processed by ProcBEOs

 Small and simple description allows easy development

 Developer does not need to worry about creating working application code

 Intermediate format is compiled separately for each simulation platform

AppBEO (high-level description)

// Define group as nodes 0-3

VAR commGrp=0:3

// Broadcast matrix A

(dataSize=64*64/2) to group

Bcast(int32,2048,0,commGrp)

// Barrier sync

Barrier(commGrp)

// Scatter 1/4 of matrix B

(dataSize=(64*64)/(4*2)) to each node

Scatter(int32,512,0,commGrp)

// Perform dot product of vector size 64

of int32

DotProduct(int32,64)

// Gather solutions from matrices

(dataSize=(64*64)/(4*2))

Gather(int32,512,commGrp)

Done

Intermediate format

send 1 1 129971 1

recv 4

send 2 2 129971 1

recv 8

send 13 1 381 1

recv 12

send 16 1 32420 1

recv 17

send 18 2 32420 1

recv 19

send 20 3 32420 1

recv 21

advt 5753856

Human Readable Intermediate Format (debug mode)

// Bcast(int32,2048,0,commGrp)

send 1 1 129971 1 Send broadcast to node 1

recv 4 Receive acknowledgement for broadcast from node

1

send 2 2 129971 1 Send broadcast to node 2

recv 8 Receive acknowledgement for broadcast from node

2

// Barrier(commGrp)

send 13 1 381 1 Send barrier to node 1

recv 12 Received barrier from node 0

// Scatter(int32,512,0,commGrp)

send 16 1 32420 1 Scatter from master to node 1

recv 17 Receive acknowledgement for scatter from 1

send 18 2 32420 1 Scatter from master to node 2

recv 19 Receive acknowledgement for scatter from 2

send 20 3 32420 1 Scatter from master to node 3

recv 21 Receive acknowledgement for scatter from 3

// DotProduct(int32,64)

advt 5753856 Advance timer for compute time in dot product

CCMT
| 132016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Device Case Study: TILE-Gx36

 Many-core processor from Tilera (then EZchip, now Mellanox)

 36 64-bit cores or tiles with local L1 and shared L2 caches

 6x6 2D mesh interconnect called iMesh

 Non-blocking switches

 One out of five networks is user accessible (User Dynamic Network)

*Spectral Element Solver

CCMT
| 142016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

if (init) {

clock=clock+t_init}

if (mem_init){…}

if(compute_dot_product){…}

if(scatter){…}

...

if (init) {

clock=clock+t_init}

if (mem_init){…}

if(compute_dot_product){…}

if(scatter){…}

...

data size Time (ns)

8 487.47

16 917.48

32 1,781.68

64 3,509.27

128 6,965.78

256 13,877.84

512 27,703.63

1024 55,401.93

Pseudo-code for ProcBEO

TILE-Gx36 training data
(testbed benchmarking) for
dot-product parameters:
data_size,int64, local mem

execution_time = f()execution_time = f()

Predicted
execution

time

Predicted
execution

timeTrain interpolation model

Radial Basis Function

K-Nearest Neighbor Kriging

Table Lookup

Interpolation techniques

Example: ProcBEO for TILE-Gx36*

 Mimic behavior of TILE-GX36 device
– Read and decode AppBEO instructions

– Resolve computes (determine performance)

– Update local clock

– Assign communication instructions to CommBEO

…Linear Interpolator

Model

Exceeds

error

threshold?

data size Time (ns)

100 5,455.77

200 10,855.59

300 16,255.47

700 37,915.54Test data
(different than training data)

Iteratively refine &
calibrate model

D. Rudolph and G. Stitt. ”An interpolation-based approach to multi-parameter performance modeling for heterogeneous systems”.

In IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP), July 2015

CCMT
| 152016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

ProcBEO Calibration (Tile-Gx36)

2D Matrix Multiply
(MxN and NxN)

Gradient calculation of one pixel
x-gradient computation time = 931ns

y-gradient computation time = 952ns

Dot product (int32) and Loop Overhead

0

20

40

60

80

100

120

4 8 16 32 64 128 256 512 1024 2048

Ex
e

cu
ti

o
n

 t
im

e
(u

s)

Vector size

dot product loop overhead

E
x
e

c
u
tio

n
 tim

e
 (s

)

 Example data from Tilera testbed

 Data have varying dimension

 Zero-dimensional: Pixel Gradient

 One-dimensional: Dot Product

 Multi-dimensional: Matrix Multiply

CCMT
| 162016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

 Mimic Tilera iMesh network behavior

 Topology, routing policy, arbitration, etc.

Topology: 2D mesh

Routing policy: dim-order

Routing policy: cut-through

X-dir latency: testbed data

Y-dir latency: testbed data

Arbitration: round-robin

...

Topology: 2D mesh

Routing policy: dim-order

Routing policy: cut-through

X-dir latency: testbed data

Y-dir latency: testbed data

Arbitration: round-robin

...

Network configuration parameters
for TILE-Gx36 iMesh

Time (ns) Throughput (Mbps)

Neighbors 20.5 3,117.355

Side-to-Side 24.5 2,608.717

Corners 30 2,129.44

iMesh one-way latencies and throughput

Direction Time (ns)

x-x 1

y-y 1

x-y 1

Switching time

TILE-Gx36 iMesh benchmarking data

if (input_buffer!=empty) {

read_event;

if(output_buffer !=full) {

forward(x_dir, y_dir);

}

}

...

if (input_buffer!=empty) {

read_event;

if(output_buffer !=full) {

forward(x_dir, y_dir);

}

}

...

Pseudo-code for CommBEO

Example: CommBEO for iMesh

CCMT
| 172016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

CommBEO Calibration (iMesh)

Round-trip latency

Direction Time (ns)

x-x 1

y-y 1

x-y 1

Switching Time

• Topology: 2D mesh
• Mesh size: 6x6
• Routing policy: dim-order
• Routing policy: store and forward
• Arbitration: round-robin

Network configuration parameters

0

20

40

60

80

100

120

140
Ex

ec
u

ti
o

n
 t

im
e

(u
s)

transfer size (32-bit words)

 CommBEOs require both quantitative and qualitative parameter values

 Qualitative parameters (left) are used to mimic movement of packets in
network

 Quantitative parameters (right) help in estimating communication time

 Some Quantitative parameters are functions of independent variables (e.g., latency)

 Others are fixed information about the network (e.g., hop time)

Hop Time: 1ns

CCMT
| 182016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Additional notes on Modeling Data

 Potentially some factors to
account for in collecting source
data to build BE models

 Vulcan & Cab are two large
machines at LLNL

 Observations:

 Vulcan is much more consistent
than Cab for each of these cases

 Vulcan has less variation across
different allocations compared to
Cab for 10 random node
allocations (0.106% vs 2.66%)
(Not plotted on right)

 Issues manifest on a per-machine
basis; needs

 Careful benchmarking practices

 UQ input to improve models

Temporal difference over 1 hour (Rank 0)

Spatial difference across 512 MPI ranks (1 timestep)

Temporal difference over 1 minute (Rank 0)

Red: Cab

Blue: Vulcan

CCMT
| 192016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Outline

 The Big Picture – Modeling and Simulation for Co-design

 Our M&S approach – Behavioral Emulation

– Overview and Workflow of Behavioral Emulation

 Modeling

– What are we modeling? What are the independent parameters?

– Building the models and model representations!

– Measurements (what does our data look like?)

 Simulation

– Combining the models together

– Validation

 Prediction: Finally what we wanted all along!

– Design Space Exploration

– Probabilistic simulations

 Conclusions & Future Directions

CCMT
20

Our Capstone Application: CMT-nek SES*

 CMT-nek is an code being developed to solve an
exascale problem

 It is a moving target – not well suited for
early-stage in-depth analysis

 Most computationally expensive and most
prominent communication routines evolved into
a “mini-app” – CMT-bone

 Mini-app development is a joint effort
between CS & Physics groups

*Spectral Element Solver

CMT-nek Workflow

N. Kumar, M. Sringarpure, T. Banerjee, J. Hackl, S.

Balachandar, H. Lam, A. George, and S. Ranka,

"CMT-bone: A Mini-app for Compressible Multiphase

Turbulence Simulation Software", WRAp 2015

CCMT
| 212016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Communication Microbenchmarks

 Setup: Tilera iMesh network CommBEOs

 Observation:

 Simulations under-predict execution
time in most cases, can improve
calibration to account for setup
overhead

 Accuracy broadly improves with
increase in number of cores and
transfer size (large message sizes)

 Need better latency models

CCMT
| 222016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Parallel 2D Matrix Multiply

Simulation setup:

 Calibration: compute models for dot
product, loop overhead, & network
parameters

 Application: Row-decomposition with
data sharing by explicit transfers

Observations:

 Accuracy of simulations improves with increase in number of cores and matrix size
 Large error values due to fine-grained decomposition of computes (dot products)
 Possible solution: Coarse-grained timing models of compute operations

2 cores (% error)

matrix size Bcast Scatter Compute Gather Total

64x64 -2.91 -0.94 18.79 -2.61 17.51

128x128 -2.93 -0.58 10.04 -2.92 9.30

256x256 -3.23 -1.07 5.08 -3.19 4.47

512x512 -5.04 -6.22 2.47 -6.66 1.90

1024x1024 -3.90 -5.75 1.32 -5.69 0.76

Fewer cores means more share of work

performed by each processor. For fine-

grained decomposition, more error incurred.

Fewer cores means more share of work

performed by each processor. For fine-

grained decomposition, more error incurred.

 Computation dominates communication, resulting in

high total error

 Error in dot-product model gets multiplied several

times over

 Computation dominates communication, resulting in

high total error

 Error in dot-product model gets multiplied several

times over

CCMT
| 232016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Parallel 2D Matrix Multiply

Simulation setup:

 Calibration: compute models for dot product, loop overhead, & network parameters
 Application: Row-decomposition with data sharing by explicit transfers

Simulation setup: compute models for matrix multiply, loop overhead, & network parameters

Observations:

 Abstraction improves simulation accuracy at a one-time cost of training effort
 Accuracy is a function of domain, no. of samples, & other kriging parameters

CCMT
| 242016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

CMT-nek Spectral Element Solver

Simulation setup: compute models for matrix multiply, loop overhead, & network parameters

Observations:

 Abstraction improves simulation accuracy at a one-time cost of training effort
 Accuracy is a function of domain, no. of samples, & other kriging parameters

CCMT
| 252016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

System-scale experiments on Vulcan

Models built at Compute Card Scale
Predicted at Midplane & Rack Scale

Models built at Node Card Scale
Predicted at Midplane & Rack Scale

Models built at Midplane Scale
Predicted at Rack Scale

Element size: 15

Element size: 9

Element size: 5

Measured

Simulated

Text: Discrepancy %

(Mean error~1.0%) (Mean error ~0.8%) (Mean error ~0.7%)

Predictions made from information from only a subset of nodes
– Foundation for simulating Exascale from Petascale systems
– Performance very well predicted, as expected, since:

– Vulcan architecture is well structured and well behaved
– CMT-bone-BE is overwhelmingly computational intensive

– Predictions closely follow the CMT-nek execution time trend

CCMT
| 262016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Outline

 The Big Picture – Modeling and Simulation for Co-design

 Our M&S approach – Behavioral Emulation

– Overview and Workflow of Behavioral Emulation

 Modeling

– What are we modeling? What are the independent parameters?

– Building the models and model representations!

– Measurements (what does our data look like?)

 Simulation

– Step 1: Combining the models together

– Step 2: Validation (not leave one out!) of individual block models

 Prediction: Finally what we wanted!

– Design Space Exploration

– Probabilistic simulations

 Conclusions & Future Directions

CCMT
| 272016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Case Studies for Architecture DSE

With some confidence in Behavioral Emulation approach we can
proceed to study next-generation devices
 DSE: Ability to evaluate what-if scenarios by changing BEOs parameters

Tile-Gx72: Many-core processor from Tilera (EZchip, then Mellanox)
 One of the largest device made by Tilera: 72 cores
 Cores in Tile-Gx72 are identical to cores in Tile-Gx36
 To simulate Tile-Gx72, we scale simulation to 72 Proc & CommBEOs

Mesh-based Intel processor*: Notional Intel-based many-core processor
 Xeon Phi-type cores with Mesh network
 To simulate anticipated Knight’s Landing

 Calibrate ProcBEOs based on existing XeonPhi (KNC) processor cores
 Use validated CommBEOs developed for iMesh network

 64-core device: similar in size to existing Xeon Phi
 100-core device: probable size; larger than existing devices

… and other notional processors with mesh-based architecture

*These simulations were conducted in 2014, before Intel confirmed details of KNL architecture

CCMT
| 28

Selected DSE Simulation Results

Can evaluate many more what-if scenarios: More processors,

Faster processors, Faster network, Network configuration

CCMT
| 292016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Vulcan Blind Predictions: Different Element Size

 With a very large sampling space, it is not feasible to collect a dense sample
set for all model parameter values

– Predictions for element sizes (7,8,12) made from models for element sizes (5,9,15)
using interpolation

 Accuracy of predictions at off-collection-points is affected strongly by choice
of interpolation technique

Predictions for various element sizes using
Polynomial Interpolation

Predictions for various element sizes using
Linear Interpolation

Element size: 12

Element size 8

Element size: 7

Measured

Simulated

Text: Discrepancy %

CCMT
| 302016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Outline

 The Big Picture – Modeling and Simulation for Co-design

 Our M&S approach – Behavioral Emulation

– Overview and Workflow of Behavioral Emulation

 Modeling

– What are we modeling? What are the independent parameters?

– Building the models and model representations!

– Measurements (what does our data look like?)

 Simulation

– Step 1: Combining the models together

– Step 2: Validation (not leave one out!) of individual block models

 Prediction: Finally what we wanted all along!

– Design Space Exploration

– Probabilistic simulations

 Conclusions & Future Directions

CCMT
31

Future Directions

Lots of things in the works!

 Integration into a popular simulator is well underway – Structural Simulation
Toolkit from Sandia National Laboratories

 Making BE easier to use:

 Automate application modeling for broader adoption in the community

 Systematic data collection and repeatable experiments

 Methods & practical techniques for interpolation on multi-dimensional data

 Using FPGAs for accelerating BE simulations for pruning the design space

CCMT
| 322016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Landscape of FPGA-acceleration Studies

*NGEE: Novo-G Exascale Emulation

Original Project Target

─ 1 large, Exascale sim distributed
over many FPGAs

NGEEv1* Progress

─ 1 small, microscale sim
limited to a single FPGA

NGEEv1 Enhancements

─ Ongoing improvements to
allow for sims at larger scale

NGEEv1 Parameter Sweeps

─ Multi-FPGA DSE+ limited to a single
simulation per device

(NEW) Pipelined Simulations:
start simulation every cycle

─ Rapid design-space exploration

─ Monte Carlo simulation for UQ

+DSE: Design-Space Exploration | 32

CCMT
| 332016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Pipelined Simulations: Concept & Approach

1. Construct Data Flow Graph (DFG)
from simulation configuration

– AppBEO+ArchBEO define instructions
and operand/output dependencies

– Instructions map to vertices and
dependencies map to edges in DFG

– Various opportunities for graph-level
optimizations

prev.s

MM
FUNC.

mm_out.s

prev.s1

RECV
FUNC.

recv_out.s

prev.s

1. Extracting DFG from BE
simulation configuration

2. Mapping DFG to FPGA Pipeline

send

mm

recv

recv

send

mm

DFG if(id==0) send;

else recv;

mm;

if(id==0) recv;

else send;

proc

proc

c
o

m
m ArchBEOS

AppBEOS

Configuration
Mapping

Type: comp
Subtype: mm
TID: 0
EID: 1
Parameters:
[256,256,256]

Type: comm
Subtype: recv
TID: 1
EID: 0
STID: 0
SEID: 0, msg
size

…

Event Attributes
Pipelined Simulation

Because each instruction (from sim) mapped to

independent HW (no resource sharing), each vertex

able to start next sim 1 cycle after current sim

2. Map DFG to pipeline circuit
– Vertex attributes define operations and

instantiate dedicated HW
– Edge attributes (e.g., src/dst) instantiate

pipeline register between src/dst pair
– Various opportunities for circuit-level

optimizations

| 33

CCMT
34

Conclusions

 Investigated and validated basic concepts and methods of BE

 Developed prototype BEOs for benchmarks and many-core processors

 Validated performance (simulation vs. testbed) and mostly observed
modest error that can be useful for DSE

 Demonstrated applicability of BE beyond device-level

 Identified aspects of benchmarking & modeling which require UQ

 Laid foundation for design-space exploration

 Predictions for Spectral Element Solver on some notional architectures

 Blind prediction using architectural and application parameters

CCMT
35

Questions?

Nalini Kumar

nkumar@hcs.ufl.edu

CCMT
| 36

References

System (macro-scale) Simulators

– C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A. Evensky,
and J. Mayo, “A simulator for large-scale parallel architectures” International
Journal of Parallel and Distributed Systems, vol. 1, no. 2, pp. 57-73, 2010. SST
MACRO

– E. Grobelny, D. Bueno, I. Troxel, A.D. George, and J.S. Vetter, “FASE: A
Framework for Scalable Performance Prediction of HPC Systems and
Applications, Simulation”, Simulation, Vol. 83, No. 10, pp. 721-745, Oct. 2007.
FASE

– G. Zheng, G. Kakulapati, L. V. Kale, “Bigsim: A parallel simulator for performance
prediction of extremely large parallel machines”, 18th IPDPS, pp. 78, 2004.
BIGSIM

– A. D. George, R. B. Fogarty, J. S. Markwell, and M. D. Miars, “An Integrated
Simulation Environment for Parallel and Distributed System Prototyping”,
Simulation, vol. 72, pp. 283-294, May 1999. ISE

– A. Symons, V. L. Narasimhan, "Parsim-message PAssing computeR SIMulator,"
IEEE First International Conference on Algorithms and Architectures for Parallel
Processing, vol. 2, pp. 621, 630, 19-20, ICAPP, 1995. PARSIM

36

CCMT
| 37

References

Device (micro-scale) & Node (meso-scale) Simulators
– Z. Dong, J. Wang, G. Riley, and S. Yalamanchili, “An Efficient Front-End for Timing-Directed

Parallel Simulation of Multi-Core System”, 7th International ICST Conference on Simulation
Tools and Techniques (SIMUTools 2014), March 2014. MANIFOLD

– J. Wang, J. Beu, S. Yalamanchili, and T. Conte. “Designing Configurable, Modifiable and
Reusable Components for Simulation of Multicore Systems”, 3rd International Workshop
on Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems, November 2012. MANIFOLD

– M. Hseih, R. Riesen, K. Thompson,W. Song, A. Rodrigues, “SST: A Scalable Parallel
Framework for Architecture-Level Performance, Power, Area and Thermal Simulation”,
Computer Journal, vol. 55, no. 2, pp. 181-191, 2012. SST MICRO

– M. Hseih, A. Rodrigues, R. Riesen, K. Thompson,W. Song, “A framework for architecture-
level power, area, and thermal simulation and its application to network-on-chip design
exploration”, SIGMETRICS, Performance Evaluation Review, vol. 38, no. 4, pp. 63-68 2011.
SST MICRO

Object-oriented System Modeling
– J. C. Browne, E. Houstis, and J. R. Purdue, “POEMS – End to End Performance Models for

Dynamic Parallel and Distributed Systems”

37

CCMT
| 38

References

Hardware Emulation
– Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanovi, and D. Patterson, “A Case for

FAME : FPGA Architecture Model Execution”, ISCA’10, June 19–23, 2010, Saint-
Malo, France, 290–301.

– J. Wawrzynek, D. A. Patterson, S. Lu, and J. C. Hoe, “RAMP: A Research Accelerator
for Multiple Processors”, 2006.

Supercomputer-specific Modeling & Simulation
– S. R. Alam, R.F. Barrett, M. R. Fahey, J. M. Larkin, and P.H. Worley, “Cray XT4 : An

Early Evaluation for Petascale Scientific Simulation”, 2007.
– A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, and S. Pakin, “A Performance

Comparison Through Benchmarking and Modeling of Three Leading
Supercomputers : Blue Gene / L , Red Storm , and Purple”, (November), 1–10,
2006.

Analytical Modeling
– L. Carrington, A. Snavely, and N. Wolter, “A performance prediction framework

for scientific applications”. Future Generation Computer Systems, 22(3), 336–
346.

– N. Jindal, V. Lotrich, E. Deumens, B.A. Sanders, and I. Sci, “ SIPMaP : A Tool for
Modeling Irregular Parallel Computations in the Super Instruction Architecture”,
IPDPS 2013

38

CCMT

CCMT

APPENDIX

CCMT

Emulation Output
• Management plane of BEOs collects various metrics of interest

during simulation run

40

procBEO

Total no. of Instr

No. of Instr of each types

Total amount of data sent

Total amount of data received

Total Execution time

Execution Time/Instr

Total computation time

Total communication time

Waiting time (on comm)

Idle time

commBEO
Total data transferred/No.of packets

Link utilization

Buffer utilization

Idle time

No. of packets dropped

Average distance

Metrics of interest

Management Plane (end of simulation)

CCMT
| 412016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Compute Microbenchmarks

-100

0

100

200

300

400

500

0

10

20

30

40

50

60

%
 e

rr
o

r

Ex
ec

u
ti

o
n

 t
im

e
(u

s)

vector size

Prediction Error in single-core Dot Product

testbed simulation %error

-5

-3

-1

1

3

5

1
10

100
1000

10000
100000

1000000
10000000

%
er

ro
r

Ex
ec

u
ti

o
n

 t
im

e
(u

s)

Image size

Prediction Error in single-core Sobel Filtering

testbed simulation %error

Granularity of problem

decomposition has significant

effect on accuracy

Granularity of problem

decomposition has significant

effect on accuracy

-100

0

100

200

300

1

100

10000

1000000

100000000

16x16 32x32 64x64 128x128 256x256 512x512

%
 E

rr
o

r

E
x
e

c
u

ti
o

n
 t
im

e
 (

u
s
)

Matrix Size

Prediction Error in single-core Matrix Multiply

testbed sim (fine-grain) sim (coarse-grain) error (fine-grain) error (coarse-grain)

Overhead is amortized with

increase in problem size

Overhead is amortized with

increase in problem size
Fine-grained model provides

desirable accuracy for this algorithm

Fine-grained model provides

desirable accuracy for this algorithm

CCMT
| 422016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Parallel 2D Matrix Multiply
(Breakdown: Fine-grained compute model)

Observations:
– Under-prediction of

communication time & over-
prediction of compute time
results in errors canceling out

– Worst-case error: 17.51%
– Best-case error: 0.13%

2 cores 4 cores

matrix size Bcast Scatter Compute Gather Total Bcast Scatter Compute Gather Total

64x64 -2.91 -0.94 18.79 -2.61 17.51 -2.41 -2.82 19.00 -2.98 16.19

128x128 -2.93 -0.58 10.04 -2.92 9.30 -2.58 0.45 10.06 -2.41 8.90

256x256 -3.23 -1.07 5.08 -3.19 4.47 -3.10 -1.63 5.08 -3.05 4.28

512x512 -5.04 -6.22 2.47 -6.66 1.90 -4.70 -4.62 2.49 -4.10 1.81

1024x1024 -3.90 -5.75 1.32 -5.69 0.76 -5.10 -6.93 1.32 -5.76 0.65

8 cores 16 cores

matrix size Bcast Scatter Compute Gather Total Bcast Scatter Compute Gather Total

64x64 -1.92 -3.35 18.79 -2.47 12.71 -1.52 -3.83 18.65 -2.08 7.70

128x128 -2.61 -0.52 9.73 -2.70 7.42 -2.72 -2.05 9.36 -2.55 5.14

256x256 -3.10 -2.91 5.05 -2.55 3.85 -3.04 -2.66 4.90 -3.10 2.82

512x512 -4.28 -5.14 2.45 -3.10 1.57 -4.04 -5.55 2.34 -2.74 1.06

1024x1024 -5.67 -8.77 1.28 -5.34 0.57 -6.81 -12.21 1.18 -4.70 0.13

32 cores

matrix size Bcast Scatter Compute Gather Total
64x64 -1.10 -4.30 15.47 -1.75 -1.05

128x128 -1.78 -2.37 8.87 -3.55 1.71

256x256 -3.27 -6.80 4.68 -4.55 0.58

512x512 -4.02 -7.98 2.22 -3.04 -0.23

1024x1024 -5.86 -13.21 1.06 -4.23 -0.35

% Error in predicting different portions of kernel% Error in predicting different portions of kernel

CCMT
| 432016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Parallel 2D Matrix Multiply
(Breakdown: Coarse-grained compute model)

Observations:
– Under-predicting communication

time as before
– Compute predictions improve for

small cores & problem sizes
– Worst-case error: 8.63%
– Best-case error: -0.15%

2 cores 4 cores

matrix size Bcast Scatter Compute Gather Total Bcast Scatter Compute Gather Total

64x64 -2.91 -0.94 0.52 -2.61 -0.15 -2.41 -2.82 -2.53 -2.98 -3.26

128x128 -2.93 -0.58 0.05 -2.92 -0.50 -2.58 0.45 5.70 -2.41 4.76

256x256 -3.23 -1.07 7.51 -3.19 6.87 -3.10 -1.63 4.83 -3.05 4.03

512x512 -5.04 -6.22 4.06 -6.66 3.47 -4.70 -4.62 3.51 -4.10 2.81

8 cores 16 cores

matrix size Bcast Scatter Compute Gather Total Bcast Scatter Compute Gather Total

64x64 -1.92 -3.35 -8.58 -2.47 -7.78 -1.52 -3.83 -7.64 -2.08 -5.97

128x128 -2.61 -0.52 -1.18 -2.70 -1.92 -2.72 -2.05 -3.17 -2.55 -3.51

256x256 -3.10 -2.91 10.24 -2.55 8.63 -3.04 -2.66 3.81 -3.10 1.93

512x512 -4.28 -5.14 4.95 -3.10 3.96 -4.04 -5.55 7.54 -2.74 5.70

32 cores

matrix size Bcast Scatter Compute Gather Total

64x64 -1.10 -4.30 7.37 -1.75 -3.29

128x128 -1.78 -2.37 13.91 -3.55 3.95

256x256 -3.27 -6.80 8.99 -4.55 3.21

512x512 -4.02 -7.98 8.28 -3.04 4.35

% Error in predicting different portions of kernel% Error in predicting different portions of kernel

CCMT
| 44

Parallel Sobel Filtering

Simulation Setup:
– Calibration parameters: Sobel gradient computation time per-pixel
– Application: Row-decomposition of image, fixed filter size, & transfers over iMesh

Observations:
– Less than ±5% error for all tested image sizes
– Does not require coarse-grained models for computation

-6

-4

-2

0

2

4

6

8

10

320x240 480x320 640x480 800x600 1024x768 1280x1024

%
 E

rr
o

r

Image size

Prediction Error (Fine-grained Decomposition)

2 cores
4 cores
8 cores
16 cores
32 cores

Raw data available in Appendix

Fine-grained models provide fairly

good accuracy in simulations

Fine-grained models provide fairly

good accuracy in simulations

CCMT
| 45

2 cores 4 cores

Image size Scatter Compute_Gx Compute_Gy Gather Total Scatter Compute_Gx Compute_Gy Gather Total

320x240 -0.58 0.24 1.04 -4.11 1.05 -3.69 0.15 0.38 -4.18 0.48

480x320 -1.67 -0.16 0.64 -4.31 0.68 -3.78 0.03 0.17 -3.69 0.37

640x480 -2.13 0.02 -0.11 -4.72 0.15 -3.94 -0.19 -0.13 -3.97 0.22

800x600 -2.43 0.08 -0.65 -4.57 -0.20 -3.88 -0.30 -0.31 -4.77 -0.09

1024x768 -3.50 0.04 -0.83 -4.44 -0.37 -3.72 -0.39 -1.18 -4.05 -0.39

1280x1024 -4.23 -0.19 -5.69 -4.52 -2.88 -3.72 -0.49 -6.99 -3.93 -3.11

Parallel Sobel Filtering
(Breakdown)

Observations:
– Worst-case error: -3.91%
– Best-case error: -0.09%

8 cores 16 cores

Image size Scatter Compute_Gx Compute_Gy Gather Total Scatter Compute_Gx Compute_Gy Gather Total

320x240 -4.63 0.16 0.09 -4.79 -0.21 -7.49 0.20 -0.16 -7.46 -1.42

480x320 -4.46 0.10 0.08 -3.58 -0.12 -5.93 -0.19 -0.08 -5.81 -0.92

640x480 -4.69 -0.12 -0.16 -3.62 -0.48 -5.53 -0.08 -0.33 -4.83 -1.11

800x600 -4.39 -0.30 -0.21 -3.64 -0.26 -5.31 -0.29 -0.41 -4.52 -1.33

1024x768 -4.25 -0.46 -0.29 -4.32 -0.30 -5.18 -0.50 -0.27 -4.39 -0.95

1280x1024 -4.11 -0.53 -2.42 -4.28 -0.83 -4.99 -0.63 -2.19 -5.49 -1.27

32 cores

Image size Scatter Compute_Gx Compute_Gy Gather Total

320x240 -11.14 0.07 -0.13 -13.77 -3.91

480x320 -9.11 -0.03 -0.35 -9.00 -3.01

640x480 -7.61 -0.37 -0.86 -7.07 -2.71

800x600 -7.06 -0.34 -0.74 -6.81 -2.61

1024x768 -6.22 -0.61 -0.41 -5.97 -2.31

1280x1024 -5.98 -0.79 -1.90 -6.90 -2.78

% Error in predicting different portions of kernel% Error in predicting different portions of kernel

CCMT
| 462016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

More on CMT-nek SES Case Study

CCMT
| 472016 Workshop on E-MuCoCoS (Co-located with ISC), Frankfurt, Germany, June 23, 2016

Midplane
Rack

 Platform: Vulcan@LLNL
– IBM BG/Q system
– 24,576 nodes, 16 cores/node
– 5D-torus interconnect

Scaling Experiment on Vulcan: Architecture

 Vulcan is a very well-behaved machine
– Homogenous machine typically partitioned

into small or large blocks
• Large: Multiples of 512 nodes
• Small: Multiples of 32 nodes

– Within a block network is isolated
and without interference

 Modeling method
– Network is modeled as a single switch – simplifying assumption for Vulcan

• Networking is a small portion of total application run-time
• Not true for typical BE simulations

– “Nodes” are node cards composed of 32 compute cards, each with 16 cores

Compute

Card

Node

Card

| 47

CCMT

Full-Scale Experiment: Architecture

node 0

switch 0

node 1 ... node X

switch 1

node Y ...

big switch A big switch B

...

(9) InfiniBand QDR

(1) InfiniBand QDR

Cab: Computing cluster at LLNL

– 1296 nodes, 40 TB memory, 2.6Ghz Cores

– Two-level switch InfiniBand QDR network

– Fat-tree-like layout

– Microsecond latencies

Node Architecture

Xeon-E5-2670

0 1

4 5

2 3

6 7

Xeon-E5-2670

0 1

4 5

2 3

6 7

QPI

32GB DDR3

...

| 48

CCMT

Node 0

Full-Scale Experiment: Setup

| 49

Xeon-E5-2670

0 1

4 5

2 3

6 7

Xeon-E5-2670

0 1

4 5

2 3

6 7

Node 4 (Node 18)

Xeon-E5-2670

0 1

4 5

2 3

6 7

Xeon-E5-2670

0 1

4 5

2 3

6 7

b
l
o
b
-
s
w
i
t
c
h

...

...

InfiniBand QDR

Small (43), Medium (63) Tests:

Tiny (23) Test:

Xeon-E5-2670

0 1

4 5

2 3

6 7

We simulate the test application on three
different subsets of Cab.

The sizes of the modeled subsets are
driven by 3D Cartesian mesh sizes:

 Tiny: 23 mesh (8 processes)

 Small: 43 mesh (64 processes)

 Medium: 63 mesh (216 processes)

We then run the test application on the
real Cab machine, and compare simulated
versus real execution time.

CCMT

Experiment Results: Accuracy (43)
Small Example: Comparison of simulated and real
execution time (histogram of 1000 runs of each)

| 50

Observations:

 Mean error of roughly 1%

 Measured distribution is
comparatively wide due to
unrelated system load

 Measured distribution has
higher mean due to
unrelated system load

 Cab network appears to be
well-characterized by a
single-switch model

CCMT

Experiment Results: Accuracy (23)
Tiny Example: Comparison of simulated and real
execution time (histogram of 1000 runs of each)

| 51

Observations:

 Mean error of roughly 1%

 Measured distribution has
higher mean due to
unrelated system load

 Assorted software and
hardware state parameters
affect result distributions

 Distribution is not well
simulated, but we are not
targeting network-less
simulations

CCMT

Experiment Results: Accuracy (63)
Medium Example: Comparison of simulated and real

execution time (histogram of 1000 runs of each)

| 52

Observations:

 Mean error of roughly 1%

 Measured distribution is
comparatively wide due to
unrelated system load

 Measured distribution has
higher mean due to
unrelated system load

 Network (compared to
small example) is faster
and less consistent

CCMT
53

CMT-Bone MPI Profiling Data

0

1

2

3

4

5

6

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

%
 o

f
to

ta
l a

p
p

 t
im

e

MPI ranks

% time spent by MPI ranks in communication

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

W
ai

ta
ll

W
ai

ta
ll

Is
e

n
d

Ir
ec

v

R
ec

v

B
ar

ri
e

r

C
o

m
m

_
d

u
p

A
llr

ed
u

ce

B
ar

ri
e

r

W
ai

ta
ll

C
o

m
m

_
d

u
p

Is
e

n
d

C
o

m
m

_
d

u
p

Ir
ec

v

C
o

m
m

_
fr

ee

C
o

m
m

_
fr

ee

Ir
ec

v

Is
e

n
d

Se
n

d

B
ca

st

Aggregate Time (ms, top 20 calls)

1E+00

1E+02

1E+04

1E+06

1E+08

1E+10

1E+12

Isend_14 Isend_13 Allreduce Isend_16 Send Bcast

M
es

sa
ge

s
se

n
t

(b
yt

es
)

Aggregate Sent Message Size for different MPI
calls

Total data transferred

Average data transferred

 Experimental setup:

 128 MPI ranks, 1 rank/node

 mpiP profiling data

 Best-case, all exchanges across
all MPI ranks occur in parallel

These experiments were run on Intel Sandy Bridge based ASC

testbed at Sandia National Laboratories, Albuquerque, NM.

CCMT
54

Data for Estimation of Transfer Times

1E+02

1E+03

1E+04

1E+05

1E+06

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

N
o

. o
f

fu
n

ct
io

n
 c

al
ls

MPI ranks

Function calls

Isend_13 Isend_14 Isend_16

0

2

4

6

8

10

12

14

16

1.00E+04

6.00E+04

1.10E+05

1.60E+05

2.10E+05

2.60E+05

3.10E+05

0 8 16 24 32 40 48 56 64 72 80 88 96 104112120

A
ve

ra
ge

 t
ra

n
sf

er
 s

iz
e

(b
yt

es
)

A
ve

ra
ge

 t
ra

n
sf

er
 s

iz
e

(b
yt

es
)

MPI Ranks

Transfer sizes (bytes)

Isend_13 Isend_14 Isend_16 (secondary axis)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

MPI Ranks

Mean time spent by an MPI rank in one routine

Isend_13 Isend_14 Isend_16

These experiments

were run on Intel

Sandy Bridge

based ASC testbed

at Sandia National

Laboratories,

Albuquerque, NM.

CCMT
55

Overall Communication Time Estimation

0

1

2

3

4

5

6

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

%
 o

f
to

ta
l a

p
p

 t
im

e

MPI Ranks

MPI_Waitall

0

1

2

3

4

5

6

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

%
 o

f
to

ta
l a

p
p

 t
im

e

MPI ranks

% time spent by MPI ranks in communication

 Most of the time is spent in MPI_Waitall

 Need timed simulations to look at these effects

 It may still be possible to use coarse models for actual transfer time
estimations

These experiments were run on Intel

Sandy Bridge based ASC testbed at

Sandia National Laboratories,

Albuquerque, NM.

CCMT

Application Modeling in SST (Motifs)

 Motifs are coarse-grained representations of app
behavior, similar to AppBEOs, that capture
interactions between network endpoints
– Look very much like an MPI program (serial flow)

– Network endpoints can be cores, devices, nodes, etc.

– Compute blocks or local operations are delay blocks
used to pace the simulation similar to our ProcBEOs

 Ember contains motifs for several commonly used
comm. patterns
– e.g., halo exchanges, MPI collectives, sweeps, etc.

– We extended motifs library by adding models for CMT-
nek comm routines

| 56

CCMT

CMT-bone Simulations using SST (1 of 5)

 For simulations we need:
1. Motif/abstract application description for CMT-bone
2. Modeling parameters to describe system
3. SST configuration file specifying motif parameters

| 57

CCMT

CMT-bone Simulations using SST (2 of 5)

 For simulations we need:
1. Motif/abstract application description for CMT-bone
2. Modeling parameters to describe the system
3. SST configuration file specifying motif parameters

| 58

CCMT

CMT-bone Simulations using SST (3 of 5)

 For simulations we need:
1. Motif/abstract application description for CMT-bone
2. Modeling parameters to describe network
3. SST configuration file specifying motif parameters

| 59

CCMT

CMT-bone Simulations using SST (4 of 5)

 For simulations we need:
1. Motif/abstract application description for CMT-bone
2. Modeling parameters to describe network
3. SST configuration file specifying motif parameters

| 60

CCMT

CMT-bone Simulations using SST (5 of 5)

 For simulations we need:
1. Motif/abstract application description for CMT-bone
2. Modeling parameters to describe network
3. Ember configuration file specifying motif parameters

| 61

CCMT

Sensitivity to Model Parameters

 Application setup:
element size=10,
iterations=1000

 Machine setup:
8x8x8 3D torus,
pkt size=2048 B

 Observations: As
flit size approaches
pkt size, simulation
estimations become
increasingly more
inaccurate (~30%)

0

20

40

60

80

100

120

2048 1024 512 256 128 64 32 16 8

Si
m

u
la

te
d

 t
im

e
 (

m
s)

flit size (B)

Simulation accuracy w.r.t. simulation granularity

| 62

 Estimating effect of granularity on simulation accuracy

CCMT

Scaling SST Simulations

 Speed of SST simulations as size of application grows

1

10

100

1000

10000

1 10 100 1000SS
T

ex
e

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

Simulated Timesteps

Single-threaded SST simulations

| 63

 Application setup: 1000
elements/processor,
element size=10

 Machine setup: 512
nodes (8x8x8 torus),
bw= 4GB/s ,pkt size=
2048B, flit size = 8B

 Observations: SST
execution time increases
linearly with an increase
in problem size

CCMT

Design-Space Exploration (1 of 3)

 Effect of varying element size on application execution time

| 64

 Application setup: 1000
elements/process, 1000
timesteps (iterations)

 System setup: 4x4x4 torus with
1 process per node, bw=4GB/s,
pkt size=2048B, flit size=8B

 Observations: As expected,
app execution time (estimated)
increases exponentially with
increase in element size

0

2

4

6

8

10

12

0 5 10 15 20 25 30

Si
m

u
la

te
d

 t
im

e
 (

se
co

n
d

s)

Element size

Parameter = Element size

CCMT

Design-Space Exploration (2 of 3)

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000

Si
m

u
la

te
d

 t
im

e
 (

se
co

n
d

s)

Elements/processor

Parameter = Elements/processor

 Effect of varying elements on application execution time

| 65

 Application setup: element
size=10, 1000 timesteps
(iterations)

 System setup: 4x4x4 torus with
1 process per node, bw=4GB/s,
pkt size=2048B, flit size=8B

 Observation: Execution time
increases almost linearly with
an increase in processor load.
Computation is the major
contributor to this increase.

CCMT

Design-Space Exploration (3 of 3)

 Weak scaling

| 66

 Application setup: element
size=10, 100 timesteps
(iterations)

 System setup: 3d torus with 1
process per node, bw=4GB/s,
pkt size=2048B, flit size=8B

 Observation: As problem size
and system size increase, the
amount of computation per
processor remains the same.
Communication time grows
fast in the beginning before
stabilizing.

256

258

260

262

264

266

268

270

272

274

276

1 4 16 64 256 1024 4096 16384

Si
m

u
la

te
d

 t
im

e
 (

m
s)

No. of nodes

parameter = machine size & problem size

