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The Big Picture 

 CCMT Center Goals:

 To radically advance the field of Compressible Multiphase Turbulence (CMT) 

 To advance predictive simulation science on current and near-future computing 
platforms with uncertainty budget as backbone

 To advance a co-design strategy that combines exascale emulation, exascale
algorithms, exascale CS

CMT-nek simulations
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Our Co-design Problem

 Our challenge is to develop a scalable high-performance software

 What are the most likely productive execution models?

 What is the measurable benefit of switching from MPI-only to MPI+X?

 Will it be considerable effort to optimize key kernels for each platform?

 How can we better decompose the app to maximize the benefit from next-
gen architectures and technologies (especially memories)?

 Also, pareto-optimization for high performance and low energy

 We don’t have the devices for experimentation

 Need simulation and emulation to help analyze different design 
tradeoffs – algorithm and architecture design space exploration (DSE)

cycles of
^
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Motivation: Large CMT-nek Design Space

Parametric Options – minimal changes to inputs & BE methods

 h-refinement vs p-refinement of CMT-nek

 Number of computational particles per cell

 Order of accuracy of Euler-Lagrange interpolation/back-coupling

Algorithmic Options – require building models for new algorithms

 Shock capturing methodology (hyperviscosity vs p-refinement)

 Euler-to-Lagrange interpolation algorithm (accuracy vs efficiency)

 Lagrange-to-Euler back-coupling algorithm

 Crystal router vs other data-communication for computational particles

 Immersed boundary vs immersed interface vs ghost fluid

Architectural Options – require models for each algorithm/arch. pair

 GPU-CPU implementation of Lagrangian particles

 GPU-CPU workload partition

Other Design Space Options

 Domain partitioning (pencil vs sheets vs blocks)

 Focusing computational power to where needed

Developed in collaboration with CMT-nek development team
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Our M&S Approach – Behavioral Emulation

 How may we study Exascale before the age of Exascale?

 Analytical studies – systems are too complicated

 Software simulation – simulations are too slow at scale

 Functional emulation – systems too massive and complex

 Prototype device – future technology, does not exist

 Prototype system – future technology, does not exist

 Many pros and cons with various methods

 We believe behavioral emulation is most promising in terms of balance of DSE 
goals (accuracy, speed, and scalability, as well as versatility)

 Scope and contribution of this paper:

 Develop methods and confidence in BE 

 Prototype and validate BEO models and simulation framework which is 
essential before optimizing framework for speed and scale

 Gain insight into abstraction and representation of application behavior

 Demonstrate the use of BE for early design space exploration 
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Key Features of Behavioral Emulation (BE)

 Component-based simulation

 Fundamental constructs called BE Objects (BEOs) act as surrogates

 BEOs characterize & represent behavior of app, device, node, & system objects as 
fabrics of interconnected ArchBEOs (with AppBEOs)

 Multi-scale simulation

 Hierarchical method based upon experimentation, abstraction, exploration

 Multi-objective simulation

 Performance, power, reliability, and other environmental factors

 Our challenge is to develop a scalable high-performance software

N. Kumar, A. George, H. Lam, G. Stitt, S. Hammond, “Understanding Performance and Reliability Trade-offs for Extreme-scale 

Systems using Behavioral Emulation”, Workshop on Modeling & Simulation of Systems and Applications (ModSim 2015)
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Co-Design Using Behavioral Emulation

UQ 

team

* BEO – Behavioral Emulation Object

CMT-nek

team

CS team

CS team

CMT-nek

team

UQ team

Coarse-grained

Simulation Platforms
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Application Models: AppBEOs

 Representation of applications that simulator can understand

 AppBEOs are list of instructions processed by ProcBEOs

 Small and simple description allows easy development

 Developer does not need to worry about creating working application code

 Intermediate format is compiled separately for each simulation platform

AppBEO (high-level description)

// Define group as nodes 0-3

VAR commGrp=0:3

// Broadcast matrix A 

(dataSize=64*64/2) to group

Bcast(int32,2048,0,commGrp)

// Barrier sync

Barrier(commGrp)

// Scatter 1/4 of matrix B 

(dataSize=(64*64)/(4*2)) to each node

Scatter(int32,512,0,commGrp)

// Perform dot product of vector size 64 

of int32

DotProduct(int32,64)

// Gather solutions from matrices 

(dataSize=(64*64)/(4*2))

Gather(int32,512,commGrp)

Done

Intermediate format

send 1 1 129971 1

recv 4

send 2 2 129971 1

recv 8

send 13 1 381 1

recv 12

send 16 1 32420 1

recv 17

send 18 2 32420 1

recv 19

send 20 3 32420 1

recv 21

advt 5753856 

Human Readable Intermediate Format (debug mode)

// Bcast(int32,2048,0,commGrp)

send 1 1 129971 1       Send broadcast to node 1

recv 4               Receive acknowledgement for broadcast from node 

1

send 2 2 129971 1       Send broadcast to node 2

recv 8               Receive acknowledgement for broadcast from node 

2

// Barrier(commGrp)

send 13 1 381 1        Send barrier to node 1

recv 12               Received barrier from node 0

// Scatter(int32,512,0,commGrp)

send 16 1 32420 1       Scatter from master to node 1

recv 17               Receive acknowledgement for scatter from 1

send 18 2 32420 1       Scatter from master to node 2

recv 19               Receive acknowledgement for scatter from 2

send 20 3 32420 1       Scatter from master to node 3

recv 21               Receive acknowledgement for scatter from 3

// DotProduct(int32,64)

advt 5753856       Advance timer for compute time in dot product



CCMT
| 132016 Workshop on E-MuCoCoS (Co-located with ISC),  Frankfurt, Germany,  June 23, 2016

Device Case Study: TILE-Gx36

 Many-core processor from Tilera (then EZchip, now Mellanox)

 36 64-bit cores or tiles with local L1 and shared L2 caches

 6x6 2D mesh interconnect called iMesh

 Non-blocking switches

 One out of five networks is user accessible (User Dynamic Network)

*Spectral Element Solver 
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if (init) {

clock=clock+t_init}

if (mem_init){…}

if(compute_dot_product){…}

if(scatter){…}

... 

if (init) {

clock=clock+t_init}

if (mem_init){…}

if(compute_dot_product){…}

if(scatter){…}

... 

data size Time (ns)

8 487.47

16 917.48

32 1,781.68

64 3,509.27

128 6,965.78

256 13,877.84

512 27,703.63

1024 55,401.93

Pseudo-code for ProcBEO

TILE-Gx36 training data 
(testbed benchmarking) for 
dot-product parameters: 
data_size,int64, local mem

execution_time = f()execution_time = f()

Predicted 
execution 

time

Predicted 
execution 

timeTrain interpolation model

Radial Basis Function

K-Nearest Neighbor Kriging

Table Lookup

Interpolation techniques

Example: ProcBEO for TILE-Gx36*

 Mimic behavior of TILE-GX36 device
– Read and decode AppBEO instructions

– Resolve computes (determine performance)  

– Update local clock

– Assign communication instructions to CommBEO

…Linear Interpolator

Model

Exceeds

error 

threshold?

data size Time (ns)

100 5,455.77

200 10,855.59

300 16,255.47

700 37,915.54Test data 
(different than training data)

Iteratively refine & 
calibrate model

D. Rudolph and G. Stitt. ”An interpolation-based approach to multi-parameter performance modeling for heterogeneous systems”. 

In IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP),  July 2015
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ProcBEO Calibration (Tile-Gx36)

2D Matrix Multiply 
(MxN and NxN) 

Gradient calculation of one pixel 
x-gradient computation time = 931ns

y-gradient computation time = 952ns 

Dot product (int32) and Loop Overhead
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 Example data from Tilera testbed

 Data have varying dimension

 Zero-dimensional: Pixel Gradient

 One-dimensional: Dot Product

 Multi-dimensional: Matrix Multiply
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 Mimic Tilera iMesh network behavior 

 Topology, routing policy, arbitration, etc.

Topology: 2D mesh

Routing policy: dim-order

Routing policy: cut-through

X-dir latency: testbed data

Y-dir latency: testbed data

Arbitration: round-robin

... 

Topology: 2D mesh

Routing policy: dim-order

Routing policy: cut-through

X-dir latency: testbed data

Y-dir latency: testbed data

Arbitration: round-robin

... 

Network configuration parameters 
for TILE-Gx36 iMesh

Time (ns) Throughput (Mbps)

Neighbors 20.5 3,117.355

Side-to-Side 24.5 2,608.717

Corners 30 2,129.44

iMesh one-way latencies and throughput

Direction Time (ns)

x-x 1

y-y 1

x-y 1

Switching time

TILE-Gx36 iMesh benchmarking data

if (input_buffer!=empty) {

read_event;

if(output_buffer !=full) {

forward(x_dir, y_dir);

}

}

... 

if (input_buffer!=empty) {

read_event;

if(output_buffer !=full) {

forward(x_dir, y_dir);

}

}

... 

Pseudo-code for CommBEO

Example: CommBEO for iMesh
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CommBEO Calibration (iMesh)

Round-trip latency

Direction Time (ns)

x-x 1

y-y 1

x-y 1

Switching Time

• Topology: 2D mesh
• Mesh size: 6x6
• Routing policy: dim-order
• Routing policy: store and forward
• Arbitration: round-robin

Network configuration parameters
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transfer size (32-bit words)

 CommBEOs require both quantitative and qualitative parameter values

 Qualitative parameters (left) are used to mimic movement of packets in 
network 

 Quantitative parameters (right) help in estimating communication time

 Some Quantitative parameters are functions of independent variables (e.g., latency)

 Others are fixed information about the network (e.g., hop time)

Hop Time: 1ns
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Additional notes on Modeling Data

 Potentially some factors to 
account for in collecting source 
data to build BE models

 Vulcan & Cab are two large 
machines at LLNL

 Observations:

 Vulcan is much more consistent 
than Cab for each of these cases

 Vulcan has less variation across 
different allocations compared to 
Cab for 10 random node 
allocations (0.106% vs 2.66%) 
(Not plotted on right)

 Issues manifest on a per-machine 
basis; needs

 Careful benchmarking practices 

 UQ input to improve models

Temporal difference over 1 hour (Rank 0)

Spatial difference across 512 MPI ranks (1 timestep) 

Temporal difference over 1 minute (Rank 0)

Red: Cab

Blue: Vulcan
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Our Capstone Application: CMT-nek SES*

 CMT-nek is an code being developed to solve an 
exascale problem 

 It is a moving target – not well suited for 
early-stage in-depth analysis

 Most computationally expensive and most 
prominent communication routines evolved into 
a “mini-app” – CMT-bone

 Mini-app development is a joint effort 
between CS & Physics groups

*Spectral Element Solver 

CMT-nek Workflow 

N. Kumar, M. Sringarpure, T. Banerjee, J. Hackl, S. 

Balachandar, H. Lam, A. George, and S. Ranka, 

"CMT-bone: A Mini-app for Compressible Multiphase 

Turbulence Simulation Software", WRAp 2015
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Communication Microbenchmarks

 Setup: Tilera iMesh network CommBEOs

 Observation:

 Simulations under-predict execution 
time in most cases, can improve 
calibration to account for setup 
overhead

 Accuracy broadly improves with 
increase in number of cores and 
transfer size (large message sizes)

 Need better latency models
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Parallel 2D Matrix Multiply

Simulation setup:

 Calibration: compute models for dot 
product, loop overhead, & network 
parameters

 Application: Row-decomposition with 
data sharing by explicit transfers

Observations: 

 Accuracy of simulations improves with increase in number of cores and matrix size
 Large error values due to fine-grained decomposition of computes (dot products)
 Possible solution: Coarse-grained timing models of compute operations

2 cores (% error)

matrix size Bcast Scatter Compute Gather Total

64x64 -2.91 -0.94 18.79 -2.61 17.51

128x128 -2.93 -0.58 10.04 -2.92 9.30

256x256 -3.23 -1.07 5.08 -3.19 4.47

512x512 -5.04 -6.22 2.47 -6.66 1.90

1024x1024 -3.90 -5.75 1.32 -5.69 0.76

Fewer cores means more share of work 

performed by each processor. For fine-

grained decomposition, more error incurred.

Fewer cores means more share of work 

performed by each processor. For fine-

grained decomposition, more error incurred.

 Computation dominates communication, resulting in 

high total error

 Error in dot-product model gets multiplied several 

times over

 Computation dominates communication, resulting in 

high total error

 Error in dot-product model gets multiplied several 

times over
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Parallel 2D Matrix Multiply

Simulation setup:

 Calibration: compute models for dot product, loop overhead, & network parameters
 Application: Row-decomposition with data sharing by explicit transfers

Simulation setup: compute models for matrix multiply, loop overhead, & network parameters

Observations:

 Abstraction improves simulation accuracy at a one-time cost of training effort
 Accuracy is a function of domain, no. of samples, & other kriging parameters
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CMT-nek Spectral Element Solver

Simulation setup: compute models for matrix multiply, loop overhead, & network parameters

Observations:

 Abstraction improves simulation accuracy at a one-time cost of training effort
 Accuracy is a function of domain, no. of samples, & other kriging parameters
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System-scale experiments on Vulcan

Models built at Compute Card Scale
Predicted at Midplane & Rack Scale

Models built at Node Card Scale
Predicted at Midplane & Rack Scale

Models built at Midplane Scale
Predicted at Rack Scale

Element size: 15

Element size: 9 

Element size: 5

Measured

Simulated

Text: Discrepancy %

(Mean error~1.0%) (Mean error ~0.8%) (Mean error ~0.7%)

Predictions made from information from only a subset of nodes 
– Foundation for simulating Exascale from Petascale systems
– Performance very well predicted, as expected, since:

– Vulcan architecture is well structured and well behaved
– CMT-bone-BE is overwhelmingly computational intensive

– Predictions closely follow the CMT-nek execution time trend
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Case Studies for Architecture DSE

With some confidence in Behavioral Emulation approach we can 
proceed to study next-generation devices
 DSE: Ability to evaluate what-if scenarios by changing BEOs parameters

Tile-Gx72: Many-core processor from Tilera (EZchip, then Mellanox)
 One of the largest device made by Tilera: 72 cores
 Cores in Tile-Gx72 are identical to cores in Tile-Gx36
 To simulate Tile-Gx72, we scale simulation to 72 Proc & CommBEOs

Mesh-based Intel processor*: Notional Intel-based many-core processor
 Xeon Phi-type cores with Mesh network
 To simulate anticipated Knight’s Landing

 Calibrate ProcBEOs based on existing XeonPhi (KNC) processor cores
 Use validated CommBEOs developed for iMesh network

 64-core device: similar in size to existing Xeon Phi
 100-core device: probable size; larger than existing devices

… and other notional processors with mesh-based architecture

*These simulations were conducted in 2014, before Intel confirmed details of KNL architecture
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Selected DSE Simulation Results

Can evaluate many more what-if scenarios: More processors, 

Faster processors, Faster network, Network configuration
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Vulcan Blind Predictions: Different Element Size

 With a very large sampling space, it is not feasible to collect a dense sample 
set for all model parameter values

– Predictions for element sizes (7,8,12) made from models for element sizes (5,9,15) 
using interpolation

 Accuracy of predictions at off-collection-points is affected strongly by choice 
of interpolation technique

Predictions for various element sizes using 
Polynomial Interpolation

Predictions for various element sizes using 
Linear Interpolation

Element size: 12

Element size 8

Element size: 7

Measured

Simulated

Text: Discrepancy %
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Future Directions

Lots of things in the works!

 Integration into a popular simulator is well underway – Structural Simulation 
Toolkit from Sandia National Laboratories

 Making BE easier to use:

 Automate application modeling for broader adoption in the community

 Systematic data collection and repeatable experiments

 Methods & practical techniques for interpolation on multi-dimensional data

 Using FPGAs for accelerating BE simulations for pruning the design space
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Landscape of FPGA-acceleration Studies

*NGEE: Novo-G Exascale Emulation

Original Project Target

─ 1 large, Exascale sim distributed 
over many FPGAs

NGEEv1* Progress 

─ 1 small, microscale sim 
limited to a single FPGA

NGEEv1 Enhancements

─ Ongoing improvements to 
allow for sims at larger scale

NGEEv1 Parameter Sweeps

─ Multi-FPGA DSE+ limited to a single 
simulation per device

(NEW) Pipelined Simulations:    
start simulation every cycle

─ Rapid design-space exploration

─ Monte Carlo simulation for UQ

+DSE: Design-Space Exploration | 32
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Pipelined Simulations: Concept & Approach 

1. Construct Data Flow Graph (DFG) 
from simulation configuration

– AppBEO+ArchBEO define instructions 
and operand/output dependencies 

– Instructions map to vertices and 
dependencies map to edges in DFG

– Various opportunities for graph-level 
optimizations

prev.s

MM 
FUNC.

mm_out.s

prev.s1

RECV 
FUNC.

recv_out.s

prev.s

1. Extracting DFG from BE 
simulation configuration

2. Mapping DFG to FPGA Pipeline

send

mm

recv

recv

send

mm

DFG if(id==0) send;

else recv;

mm;

if(id==0) recv;

else send;

proc

proc

c
o

m
m ArchBEOS

AppBEOS

Configuration 
Mapping

Type: comp
Subtype: mm
TID: 0
EID: 1
Parameters: 
[256,256,256]

Type: comm
Subtype: recv
TID: 1
EID: 0
STID: 0
SEID: 0, msg
size

…

Event Attributes
Pipelined Simulation

Because each instruction (from sim) mapped to 

independent HW (no resource sharing), each vertex 

able to start next sim 1 cycle after current sim

2. Map DFG to pipeline circuit
– Vertex attributes define operations and 

instantiate dedicated HW
– Edge attributes (e.g., src/dst) instantiate 

pipeline register between src/dst pair
– Various opportunities for circuit-level 

optimizations 

| 33
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Conclusions

 Investigated and validated basic concepts and methods of BE

 Developed prototype BEOs for benchmarks and many-core processors

 Validated performance (simulation vs. testbed) and mostly observed 
modest error that can be useful for DSE

 Demonstrated applicability of BE beyond device-level 

 Identified aspects of benchmarking & modeling which require UQ

 Laid foundation for design-space exploration 

 Predictions for Spectral Element Solver on some notional architectures

 Blind prediction using architectural and application parameters
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Questions?

Nalini Kumar

nkumar@hcs.ufl.edu
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Emulation Output
• Management plane of BEOs collects various metrics of interest 

during simulation run 

40

procBEO

Total no. of Instr

No. of Instr of each types

Total amount of data sent

Total amount of data received

Total Execution time

Execution Time/Instr

Total computation time

Total communication time

Waiting time (on comm)

Idle time

commBEO
Total data transferred/No.of packets

Link utilization

Buffer utilization

Idle time

No. of packets dropped

Average distance 

Metrics of interest

Management Plane (end of simulation)
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Compute Microbenchmarks
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Parallel 2D Matrix Multiply 
(Breakdown: Fine-grained compute model)

Observations:
– Under-prediction of 

communication time & over-
prediction of compute time 
results in errors canceling out

– Worst-case error: 17.51%
– Best-case error: 0.13%

2 cores 4 cores

matrix size Bcast Scatter Compute Gather Total Bcast Scatter Compute Gather Total

64x64 -2.91 -0.94 18.79 -2.61 17.51 -2.41 -2.82 19.00 -2.98 16.19

128x128 -2.93 -0.58 10.04 -2.92 9.30 -2.58 0.45 10.06 -2.41 8.90

256x256 -3.23 -1.07 5.08 -3.19 4.47 -3.10 -1.63 5.08 -3.05 4.28

512x512 -5.04 -6.22 2.47 -6.66 1.90 -4.70 -4.62 2.49 -4.10 1.81

1024x1024 -3.90 -5.75 1.32 -5.69 0.76 -5.10 -6.93 1.32 -5.76 0.65

8 cores 16 cores

matrix size Bcast Scatter Compute Gather Total Bcast Scatter Compute Gather Total

64x64 -1.92 -3.35 18.79 -2.47 12.71 -1.52 -3.83 18.65 -2.08 7.70

128x128 -2.61 -0.52 9.73 -2.70 7.42 -2.72 -2.05 9.36 -2.55 5.14

256x256 -3.10 -2.91 5.05 -2.55 3.85 -3.04 -2.66 4.90 -3.10 2.82

512x512 -4.28 -5.14 2.45 -3.10 1.57 -4.04 -5.55 2.34 -2.74 1.06

1024x1024 -5.67 -8.77 1.28 -5.34 0.57 -6.81 -12.21 1.18 -4.70 0.13

32 cores

matrix size Bcast Scatter Compute Gather Total
64x64 -1.10 -4.30 15.47 -1.75 -1.05

128x128 -1.78 -2.37 8.87 -3.55 1.71

256x256 -3.27 -6.80 4.68 -4.55 0.58

512x512 -4.02 -7.98 2.22 -3.04 -0.23

1024x1024 -5.86 -13.21 1.06 -4.23 -0.35

% Error in predicting different portions of kernel% Error in predicting different portions of kernel
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Parallel 2D Matrix Multiply 
(Breakdown: Coarse-grained compute model)

Observations:
– Under-predicting communication 

time as before
– Compute predictions improve for 

small cores & problem sizes
– Worst-case error: 8.63%
– Best-case error: -0.15%

2 cores 4 cores

matrix size Bcast Scatter Compute Gather Total Bcast Scatter Compute Gather Total

64x64 -2.91 -0.94 0.52 -2.61 -0.15 -2.41 -2.82 -2.53 -2.98 -3.26

128x128 -2.93 -0.58 0.05 -2.92 -0.50 -2.58 0.45 5.70 -2.41 4.76

256x256 -3.23 -1.07 7.51 -3.19 6.87 -3.10 -1.63 4.83 -3.05 4.03

512x512 -5.04 -6.22 4.06 -6.66 3.47 -4.70 -4.62 3.51 -4.10 2.81

8 cores 16 cores

matrix size Bcast Scatter Compute Gather Total Bcast Scatter Compute Gather Total

64x64 -1.92 -3.35 -8.58 -2.47 -7.78 -1.52 -3.83 -7.64 -2.08 -5.97

128x128 -2.61 -0.52 -1.18 -2.70 -1.92 -2.72 -2.05 -3.17 -2.55 -3.51

256x256 -3.10 -2.91 10.24 -2.55 8.63 -3.04 -2.66 3.81 -3.10 1.93

512x512 -4.28 -5.14 4.95 -3.10 3.96 -4.04 -5.55 7.54 -2.74 5.70

32 cores

matrix size Bcast Scatter Compute Gather Total

64x64 -1.10 -4.30 7.37 -1.75 -3.29

128x128 -1.78 -2.37 13.91 -3.55 3.95

256x256 -3.27 -6.80 8.99 -4.55 3.21

512x512 -4.02 -7.98 8.28 -3.04 4.35

% Error in predicting different portions of kernel% Error in predicting different portions of kernel
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Parallel Sobel Filtering

Simulation Setup:
– Calibration parameters: Sobel gradient computation time per-pixel
– Application: Row-decomposition of image, fixed filter size, & transfers over iMesh

Observations:
– Less than ±5% error for all tested image sizes
– Does not require coarse-grained models for computation
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Raw data available in Appendix

Fine-grained models provide fairly 

good accuracy in simulations

Fine-grained models provide fairly 

good accuracy in simulations
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2 cores 4 cores

Image size Scatter Compute_Gx Compute_Gy Gather Total Scatter Compute_Gx Compute_Gy Gather Total

320x240 -0.58 0.24 1.04 -4.11 1.05 -3.69 0.15 0.38 -4.18 0.48

480x320 -1.67 -0.16 0.64 -4.31 0.68 -3.78 0.03 0.17 -3.69 0.37

640x480 -2.13 0.02 -0.11 -4.72 0.15 -3.94 -0.19 -0.13 -3.97 0.22

800x600 -2.43 0.08 -0.65 -4.57 -0.20 -3.88 -0.30 -0.31 -4.77 -0.09

1024x768 -3.50 0.04 -0.83 -4.44 -0.37 -3.72 -0.39 -1.18 -4.05 -0.39

1280x1024 -4.23 -0.19 -5.69 -4.52 -2.88 -3.72 -0.49 -6.99 -3.93 -3.11

Parallel Sobel Filtering 
(Breakdown)

Observations:
– Worst-case error: -3.91%
– Best-case error: -0.09%

8 cores 16 cores

Image size Scatter Compute_Gx Compute_Gy Gather Total Scatter Compute_Gx Compute_Gy Gather Total

320x240 -4.63 0.16 0.09 -4.79 -0.21 -7.49 0.20 -0.16 -7.46 -1.42

480x320 -4.46 0.10 0.08 -3.58 -0.12 -5.93 -0.19 -0.08 -5.81 -0.92

640x480 -4.69 -0.12 -0.16 -3.62 -0.48 -5.53 -0.08 -0.33 -4.83 -1.11

800x600 -4.39 -0.30 -0.21 -3.64 -0.26 -5.31 -0.29 -0.41 -4.52 -1.33

1024x768 -4.25 -0.46 -0.29 -4.32 -0.30 -5.18 -0.50 -0.27 -4.39 -0.95

1280x1024 -4.11 -0.53 -2.42 -4.28 -0.83 -4.99 -0.63 -2.19 -5.49 -1.27

32 cores

Image size Scatter Compute_Gx Compute_Gy Gather Total

320x240 -11.14 0.07 -0.13 -13.77 -3.91

480x320 -9.11 -0.03 -0.35 -9.00 -3.01

640x480 -7.61 -0.37 -0.86 -7.07 -2.71

800x600 -7.06 -0.34 -0.74 -6.81 -2.61

1024x768 -6.22 -0.61 -0.41 -5.97 -2.31

1280x1024 -5.98 -0.79 -1.90 -6.90 -2.78

% Error in predicting different portions of kernel% Error in predicting different portions of kernel
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More on CMT-nek SES Case Study
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Midplane
Rack

 Platform: Vulcan@LLNL
– IBM BG/Q system
– 24,576 nodes, 16 cores/node
– 5D-torus interconnect

Scaling Experiment on Vulcan: Architecture

 Vulcan is a very well-behaved machine 
– Homogenous machine typically partitioned 

into small or large blocks
• Large: Multiples of 512 nodes
• Small: Multiples of 32 nodes

– Within a block network is isolated 
and without interference

 Modeling method 
– Network is modeled as a single switch – simplifying assumption for Vulcan

• Networking is a small portion of total application run-time
• Not true for typical BE simulations

– “Nodes” are node cards composed of 32 compute cards, each with 16 cores

Compute 

Card

Node

Card
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Full-Scale Experiment: Architecture

node 0

switch 0

node 1 ... node X

switch 1

node Y ...

big switch A big switch B

...

(9) InfiniBand QDR

(1) InfiniBand QDR

Cab: Computing cluster at LLNL

– 1296 nodes, 40 TB memory, 2.6Ghz Cores

– Two-level switch InfiniBand QDR network

– Fat-tree-like layout

– Microsecond latencies

Node Architecture

Xeon-E5-2670

0 1

4 5

2 3

6 7

Xeon-E5-2670

0 1

4 5

2 3

6 7

QPI

32GB DDR3

...
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Node 0

Full-Scale Experiment: Setup
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Xeon-E5-2670

0 1

4 5

2 3

6 7

Xeon-E5-2670

0 1

4 5

2 3

6 7

Node 4 (Node 18)

Xeon-E5-2670

0 1

4 5

2 3

6 7

Xeon-E5-2670

0 1

4 5

2 3

6 7

b
l
o
b
-
s
w
i
t
c
h

...

...

InfiniBand QDR

Small (43), Medium (63) Tests:

Tiny (23) Test:

Xeon-E5-2670

0 1

4 5

2 3

6 7

We simulate the test application on three 
different subsets of Cab.

The sizes of the modeled subsets are 
driven by 3D Cartesian mesh sizes:

 Tiny: 23 mesh (8 processes)

 Small: 43 mesh (64 processes)

 Medium: 63 mesh (216 processes)

We then run the test application on the 
real Cab machine, and compare simulated 
versus real execution time.
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Experiment Results: Accuracy (43) 
Small Example: Comparison of simulated and real 
execution time (histogram of 1000 runs of each)

| 50

Observations:

 Mean error of roughly 1%

 Measured distribution is 
comparatively wide due to 
unrelated system load

 Measured distribution has 
higher mean due to 
unrelated system load

 Cab network appears to be 
well-characterized by a 
single-switch model
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Experiment Results: Accuracy (23) 
Tiny Example: Comparison of simulated and real 
execution time (histogram of 1000 runs of each)

| 51

Observations:

 Mean error of roughly 1%

 Measured distribution has 
higher mean due to 
unrelated system load

 Assorted software and 
hardware state parameters 
affect result distributions

 Distribution is not well 
simulated, but we are not 
targeting network-less 
simulations



CCMT

Experiment Results: Accuracy (63) 
Medium Example: Comparison of simulated and real 

execution time (histogram of 1000 runs of each)
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Observations:

 Mean error of roughly 1%

 Measured distribution is 
comparatively wide due to 
unrelated system load

 Measured distribution has 
higher mean due to 
unrelated system load

 Network (compared to 
small example) is faster 
and less consistent
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CMT-Bone MPI Profiling Data
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 Experimental setup:

 128 MPI ranks, 1 rank/node

 mpiP profiling data 

 Best-case, all exchanges across 
all MPI ranks occur in parallel

These experiments were run on Intel Sandy Bridge based ASC 

testbed at Sandia National Laboratories, Albuquerque, NM. 
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Data for Estimation of Transfer Times
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These experiments 

were run on Intel 

Sandy Bridge 

based ASC testbed

at Sandia National 

Laboratories, 

Albuquerque, NM. 
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Overall Communication Time Estimation
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 Most of the time is spent in MPI_Waitall

 Need timed simulations to look at these effects

 It may still be possible to use coarse models for actual transfer time 
estimations

These experiments were run on Intel 

Sandy Bridge based ASC testbed at 

Sandia National Laboratories, 

Albuquerque, NM. 
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Application Modeling in SST (Motifs)

 Motifs are coarse-grained representations of app 
behavior, similar to AppBEOs, that capture 
interactions between network endpoints
– Look very much like an MPI program (serial flow)

– Network endpoints can be cores, devices, nodes, etc.

– Compute blocks or local operations are delay blocks 
used to pace the simulation similar to our ProcBEOs

 Ember contains motifs for several commonly used 
comm. patterns
– e.g., halo exchanges, MPI collectives, sweeps, etc.

– We extended motifs library by adding models for CMT-
nek comm routines
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CMT-bone Simulations using SST (1 of 5)

 For simulations we need:
1. Motif/abstract application description for CMT-bone
2. Modeling parameters to describe system
3. SST configuration file specifying motif parameters
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CMT-bone Simulations using SST (2 of 5)

 For simulations we need:
1. Motif/abstract application description for CMT-bone
2. Modeling parameters to describe the system
3. SST configuration file specifying motif parameters
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CMT-bone Simulations using SST (3 of 5)

 For simulations we need:
1. Motif/abstract application description for CMT-bone
2. Modeling parameters to describe network
3. SST configuration file specifying motif parameters
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CMT-bone Simulations using SST (4 of 5)

 For simulations we need:
1. Motif/abstract application description for CMT-bone
2. Modeling parameters to describe network
3. SST configuration file specifying motif parameters
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CMT-bone Simulations using SST (5 of 5)

 For simulations we need:
1. Motif/abstract application description for CMT-bone
2. Modeling parameters to describe network
3. Ember configuration file specifying motif parameters

| 61
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Sensitivity to Model Parameters

 Application setup: 
element size=10, 
iterations=1000

 Machine setup: 
8x8x8 3D torus,    
pkt size=2048 B

 Observations: As  
flit size approaches 
pkt size, simulation 
estimations become 
increasingly more 
inaccurate (~30%)
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 Estimating effect of granularity on simulation accuracy
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Scaling SST Simulations

 Speed of SST simulations as size of application grows
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 Application setup: 1000 
elements/processor, 
element size=10

 Machine setup: 512 
nodes (8x8x8 torus), 
bw= 4GB/s ,pkt size= 
2048B, flit size = 8B

 Observations: SST 
execution time increases 
linearly with an increase 
in problem size
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Design-Space Exploration (1 of 3)

 Effect of varying element size on application execution time
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 Application setup: 1000 
elements/process, 1000 
timesteps (iterations)

 System setup: 4x4x4 torus with 
1 process per node, bw=4GB/s, 
pkt size=2048B, flit size=8B

 Observations: As expected, 
app execution time (estimated) 
increases exponentially with 
increase in element size
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 Effect of varying elements on application execution time

| 65

 Application setup: element 
size=10, 1000 timesteps
(iterations)

 System setup: 4x4x4 torus with 
1 process per node, bw=4GB/s, 
pkt size=2048B, flit size=8B

 Observation: Execution time 
increases almost linearly with 
an increase in processor load. 
Computation is the major 
contributor to this increase.
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 Weak scaling

| 66

 Application setup: element 
size=10, 100 timesteps
(iterations)

 System setup: 3d torus with 1 
process per node, bw=4GB/s, 
pkt size=2048B, flit size=8B

 Observation: As problem size 
and system size increase, the 
amount of computation per 
processor remains the same. 
Communication time grows 
fast in the beginning before 
stabilizing.
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