
1

BSW: FPGA-Accelerated BLAST-Wrapped

Smith-Waterman Aligner

Bryant C. Lam†, Carlo Pascoe†, Scott Schaecher*, Herman Lam†, Alan D. George†

† NSF Center for High-Performance Reconfigurable Computing (CHREC)

Dept. of Electrical and Computer Engineering, University of Florida

Gainesville, FL 32611

{blam, pascoe, hlam, george}@chrec.org

* Monsanto Company

800 North Lindbergh Blvd

St. Louis, MO 63167

scott.r.schaecher@monsanto.com

Abstract—The current generation of genome sequencers pro-

duces orders of magnitude more sequencing data at a fraction of

their former cost, a development that has repositioned the se-

quencing bottleneck from data acquisition to alignment and

analysis. Optimal alignment algorithms, such as Smith-

Waterman (SW), provide the most desirable output in terms of

sensitivity and accuracy, but are perceived as too computational-

ly demanding for practical use. Practical alignment tools, such as

NCBI BLAST, have compensated by using increasingly special-

ized heuristics to provide faster results at the expense of reduced

sensitivity and accuracy. This paper presents an FPGA-based

alignment tool that considerably accelerates the SW algorithm

with a highly configurable and novel hardware computation en-

gine, while providing a robust software interface that seamlessly

integrates into existing BLAST pipelines. This new alignment

tool, BLAST-wrapped Smith-Waterman (BSW), improves upon

previously published SW-acceleration research by providing a

refined tool with a familiar and standard BLAST interface and

essential local alignment statistics found in production tools. Ex-

perimental evaluation of BSW’s performance for several config-

urations using large, real-world genome datasets shows speedups

up to 59 and 7 vs. BLAST (word sizes 7 and 11) and 63 vs.

FASTA’s SSEARCH on a single Altera Stratix IV E530 FPGA.

Scaled speedups exceeding 3300 vs. SSEARCH were observed

when executed on up to 64 FPGAs of Novo-G, the reconfigurable

supercomputer in the NSF CHREC Center at Florida.

Keywords—Smith-Waterman; BLAST; SSEARCH; FPGA;

reconfigurable computing; sequence alignment

I. INTRODUCTION

In recent years, technological advancement in DNA se-
quencing has led to an exponential surge in raw sequence data
volume and throughput. Current-generation genome sequenc-
ers produce orders of magnitude more sequencing data at a
fraction of their former cost, a development that has reposi-
tioned the sequencing bottleneck from data acquisition to
alignment and analysis [1]. With no evidence to show this trend
lessening in the near future, solutions aimed at alleviating this
bottleneck with emphases on performance, productivity, accu-
racy, scalability, and/or sustainability become important for the
future of personalized genome sequencing and collaborative
research efforts. Furthermore, recent solutions [e.g., 2, 3, 4]
focus on the development of new, faster, and more specialized
alignment algorithms or the acceleration of existing ones, but
often overlook the importance of familiarity or ease of integra-
tion into higher-order analysis pipelines, which has proven to
be a major hurdle for tool adoption. As an attempt to address

both issues, this paper presents a new alignment tool, BLAST-
wrapped Smith-Waterman (BSW), which features reconfigura-
ble FPGA technology to accelerate the Smith-Waterman (SW)
algorithm [5] with a highly parameterized and novel hardware
computation engine while also providing a robust software
interface that seamlessly integrates into existing processing
pipelines that employ NCBI BLAST [6], the most widely used
local alignment tool worldwide.

Optimal alignment algorithms, such as SW, provide the
most desirable output in terms of sensitivity and accuracy, but
are perceived as too computationally demanding for practical
use. Practical alignment tools, such as NCBI BLAST, have
compensated by using increasingly specialized heuristics to
provide faster results at the expense of reduced sensitivity and
accuracy. The observed reduction is deemed acceptable in
many circumstances, leading to the global adoption of BLAST
and solidifying it as the de facto, all-purpose tool for local
alignment; however, optimal SW aligners such as FASTA’s
SSEARCH [7], or the EMBOSS Water tool [8], retain their
utility in specialized alignment scenarios when analysis re-
quirements exceed the capabilities of heuristics to fully capture
the nuances of underlying data. As costs decrease and genome
sequencing becomes more widespread, new tools that attempt
to bridge these two competing concerns (performance vs. sen-
sitivity/accuracy) must also address the challenges of produc-
tive use, adoption, and integration into existing pipelines and
user workflows.

The remainder of the paper is structured as follows. Section
II provides a brief overview of the SW and NCBI BLAST al-
gorithms. Section III presents BSW design details focused on
its SW hardware core and the robust software architecture sup-
porting it. Compared to previously published SW-acceleration
research, BSW provides a refined tool with a familiar and
standard BLAST interface and essential local alignment statis-
tics lacking from numerous other accelerators. Compared to
BLAST, BSW provides additional functionality such as unre-
stricted scoring parameters. In Section IV, experimental evalua-
tion of BSW’s performance for several configurations on large,
real-world genome datasets demonstrates speedups up to 59
and 7 vs. BLAST (word sizes 7 and 11) and 63 vs. SSEARCH
on a single Altera Stratix IV E530 FPGA. Additionally in Sec-
tion IV, the scalability of BSW is showcased with speedups
exceeding 3300 vs. SSEARCH on 64 FPGAs when evaluated
on Novo-G, the reconfigurable supercomputer in the NSF
CHREC Center at Florida [9, 10]. Finally, Section V provides
conclusions and directions for future work.

978-1-4799-2079-2/13/$31.00 ©2013 IEEE

2

II. BACKGROUND AND RELATED WORK

The foundation of our work relies on previous contributions
with the Smith-Waterman algorithm and NCBI BLAST.

A. Smith-Waterman

Given two character sequences, the SW local alignment al-
gorithm [5] searches for the pair of subsequences, one from
each, such that no other pair of subsequences possesses greater
similarity under the rules of a selected scoring scheme. Imple-
mented with a dynamic-programming algorithm, the scoring
criterion incentivizes correctly matched characters while penal-
izing character mismatches and the insertion/deletion of un-
matched, multi-character strings (gaps). Although the algo-
rithm is effective in identifying significant alignments (includ-
ing those from distant homologies), its software time complexi-
ty is O(mn)—where m is the database length and n is the query
length—and is infamously slow when processing large se-
quences, prompting the creation of faster heuristic aligners or
the acceleration of existing ones.

Two notable SW software tools are the EMBOSS Water [8]
and FASTA’s SSEARCH [7] aligners. Water is one of over 200
tools from the EMBOSS suite maintained by the European Bio-
informatics Institute (EMBL-EBI). While Water is able to exe-
cute up to twice as fast compared to similar tools in the
EMBOSS suite, its space complexity is O(mn), limiting its utili-
ty to shorter alignments that fit within memory. SSEARCH is
part of the FASTA package maintained by the University of
Virginia and is optimized with SSE2 instructions and multi-
threading support to accelerate alignments. In contrast to a ma-
jority of other SW tools, SSEARCH provides local alignment
statistics to assess the significance of alignments versus a coin-
cidental hit from random chance [11]. While other software SW
aligners such as SWIPE [12] have higher performance vs.
SSEARCH, SSEARCH remains ubiquitous due to its maturity
and is used as one of our software baselines in later sections.

The SW algorithm is highly amenable for hardware accel-
eration. While GPU implementations typically use vectoriza-
tion to achieve performance gains [2, 3], one common method
observed in FPGA-accelerated SW designs incorporates a sys-
tolic-array architecture to perform score calculations in paral-
lel. This parallelization strategy reduces the time complexity of
naive software implementations to O(m+n) in hardware. Figure
1a presents a general systolic-array architecture for SW. The
processing elements (PEs) are loaded with the query sequence,
and each PE individually calculates the scores for its specific
query character while the reference database is streamed
through. Figure 1b depicts this parallel computation in a wave-
front manner. While the classic architecture incorporates cen-
tralized control logic to manage the hardware, our SW core
(based on previous work in [13]) presents the concept of in-
stream control where control logic is minimized and distributed
to each PE. Software performs control operations on the hard-
ware by embedding control characters within the que-
ry/database stream that passes through each PE.

B. NCBI BLAST

Due to SW’s slow performance for large datasets, various
heuristic-based tools were created to speed up alignment. One
popular heuristic, NCBI’s BLAST (Basic Local Alignment
Search Tool) is able to very quickly determine alignments with
some sacrifice to sensitivity and accuracy [6]. BLAST operates
by building a set of words based on a specified word size from

the query sequence and quickly searching the reference for
exact matches against the set. Exact matches are extended in
both directions to determine their candidacy as an alignment. If
multiple extended matches are nearby, they may be joined to
become a higher scoring alignment. The principle behind this
algorithm is that significant alignments between the reference
and query tend to have numerous matching characters adjacent
to each other; therefore, searching for these strings of matching
characters is faster than calculating each character’s score. The
aforementioned word size determines the minimum string
length of matching characters, with the default set at 11. This
heuristic strategy improves performance without a substantial
hit in sensitivity for sufficiently long references and queries
from similar homology, but performance deteriorates rapidly as
the heuristics are tuned for higher sensitivity.

The integration of Karlin and Altschul’s work on local
alignment statistics contributed to the popularity of BLAST.
SW reports the optimal alignment’s score, but it does not na-
tively provide the means to determine its significance. BLAST
determines the significance of an alignment with an E-value
based on the lengths of the reference and query, the score of the
alignment, and several Karlin-Altschul statistical parameters
[11]. The E-value describes the probability that an alignment
with similar score will occur by chance in the current refer-
ence, decreasing exponentially as the score increases. As E-
value approaches zero, the alignment’s significance increases.
To aid alignment on certain datasets, BLAST can filter results
that do not meet an E-value threshold.

III. BLAST-WRAPPED SMITH-WATERMAN (BSW)

This section introduces the design of our FPGA-accelerated
SW local alignment tool, called BSW. The first subsection
describes the configurable SW hardware core used for internal
query processing. The following subsection describes the sup-
porting software’s architecture that provides the BLAST in-
put/output interface and local alignment statistics.

A. Internal Smith-Waterman Core Architecture

The SW core within BSW extends our previous work from
[13]. This highly customizable core provides for a variety of
configurable parameters including scoring values, linear- or
affine-gap models, nucleotide or amino-acid alphabets, charac-
ter-ambiguity mask support, Altera or Xilinx FPGA targets,
integer or fixed-point calculations, single or multiple outputs
per query, number of query pipelines per FPGA, option to ex-

Fig. 1. (a) General SW systolic array, (b) Parallel calculation of scores

1 2 3 4 5 6 7 8

S
A C C A T G T A

0 0 0 0 0 0 0 0

C 0 0 8 8 0 0 0 0 0

C 0 0 8 16 0 0 0 0 0

C 0 0 8 16 6 0 0 0 0

A 0 8 0 0 24 4 3 2 8

G 0 0 0 0 4 14 12 0 0

G 0 0 0 0 3 0 22 2 1

G 0 0 0 0 2 0 8 12 0

G 0 0 0 0 1 0 8 0 2

T 0 0 0 0 0 9 0 16 0

1

2

3

4

5

6

7

:
:
:

Processing Element (PE)

PE 1

FPGA

PE 2

Input Interface

PE 3

PE 4

Host CPU

PE 8

PE 7

PE 6

PE 5

PE 9

PE 10

PE 11

PE 12 PE 13

PE N

Output Interface

C
o

n
tr

o
l L

o
gi

c

External SRAM

(a) (b)

3

tend queries across multiple FPGAs, and option to record
alignment pointers that enable software traceback and align-
ment statistics. Figure 2 presents the internal systolic-array
architecture of BSW.

SW returns the highest similarity score between aligned se-
quences, but in order to generate the string representation of a
calculated alignment, the additional step of tracing back
through the dynamic programming matrix from the highest
score to a zero termination point is required. This traceback
step requires many FPGA resources when naively implemented
in hardware, resulting in many previous SW FPGA solutions
that completely omit this functionality. BSW takes an alternate
approach that minimizes additional hardware requirements
without sacrificing functionality. By keeping track of the
aligned database subsequence length as well as its termination
location in the database, a relatively small, non-minimal
bounding box can be placed on the alignment location in the
dynamic-programming matrix (a minimal bounding box would
require the hardware to keep track of two additional metrics). If
the string representation of an alignment is required (deter-
mined by the selected output format at runtime), a localized
software SW operation with traceback is performed within the
bounding box. This software operation requires relatively neg-
ligible computation and overlapping traceback with hardware
execution yields no additional time penalty. This additional
information required to provide traceback support is also used
in the calculation of BLAST alignment statistics as well as the
logging of multiple outputs per query.

When logging multiple outputs per query, simply reporting
the top scoring locations is insufficient, as this would incorrectly
identify sub-alignments of the optimal alignment as unique
alignments. BSW uses database location and alignment length
statistics required in traceback to ensure that only non-
overlapping alignments are reported. A limitation to this approach
is that only a single subsequence from a query can map to the
same subsequence in the database, allowing for the rare loss of
sub-optimal alignments only when multiple outputs are enabled.

B. BSW Software Architecture

As discussed in the introduction, recently published re-
search solutions on SW acceleration often overlook the im-
portance of familiarity or ease of integration into higher-order
analysis pipelines. This oversight has proven to be a major
hurdle for tool adoption. The objective of the BSW software
modules is to provide a robust software interface that allows
BSW to seamlessly integrate into existing BLAST pipelines.
The supporting software for BSW consists of three main com-
putational units (shown in Figure 3):

1. Workers: synchronize with the FPGA input interface and
manage transmission of queries and databases over PCIe.

2. Parsers: handle conversion of input sequences into a
hardware-compatible format for FPGA processing.

3. Aligners: retrieve results from FPGA output interface and
perform alignment post-processing such as software trace-
back, alignment statistics, and output formatting.

A master thread performs initial setup by launching a single
worker thread per FPGA, loading the reference database into
memory, and loading the specified SW core onto the hardware
platform. Each worker thread initializes its own parser and
aligner threads to perform input and output processing for its
assigned FPGA. Parsers receive a subset of input queries from
the main thread and build an input stream for its assigned FPGA.
The input stream consists of sequence and pipeline-control char-
acters (21chars/64bits for nucleotide sequences or 12chars/64bits
for amino-acid sequences) correctly ordered as to instruct hard-
ware to generate the desired results. Software aligner threads
collect and operate on hardware outputs as they become availa-
ble. Required aligner operations (e.g., additional software trace-
back, E-value, bit-score, etc.) depend upon the selected BLAST
output format. Aligner operations run concurrently with FPGA
execution and are hidden behind the typically longer FPGA pro-
cessing time; however, if the default of one aligner per FPGA
cannot process fast enough, the user may specify a runtime op-
tion (-aligners) to instantiate additional aligners per FPGA. Fi-
nally, all aligner outputs are processed through an output genera-
tor to create BLAST-compatible output files.

In order to support ease of deployment into existing pipe-
lines, the hardware core is interfaced with a BLAST wrapper
with additional hardware-specific runtime options. The majori-
ty of runtime options available in BLAST adjust its various
heuristics. BSW, however, does not require the majority of
these heuristics due to its optimal SW core and safely ignores
the appropriate options. Several new runtime options are added
to allow users to specify the hardware core to load (raw binary
file, -rbf), its operating frequency (-clk), and system configura-
tion (-fpgas and -boards).

Included in the BSW package is a database-builder com-
panion application that transforms input FASTA-formatted
database files into a custom BSW-compatible database format.
All software is implemented with C++11 and leverages several
of its new features such as improved threading support.

BSW Software Architecture

Worker AlignerParser

Hardware Interface Traceback
Calculation

Statistics
Calculation

Output
Generator

Q
u

e
ry

 P
re

p
ro

ce
ss

o
r

Smith-Waterman
Hardware Core

FASTA
Queries

BSW
Database

Builder

Smith-Waterman
Hardware Core

Design Complier

FASTA
Database

Scoring
Parameters

BLAST
Output Files

Fig. 3. BSW software architecture with Smith-Waterman core

PE(0,1) PE(0,2) PE(0,3) PE(0,y)

PE(1,1) PE(1,2) PE(1,3) PE(1,y)

PE(x,2) PE(x,3) PE(x,y)PE(x,1)

Input
FIFO

Interface

Out FIFO
Interface FIFO

Done[0]

Out FIFO
Interface FIFO

Done[1]

Out FIFO
Interface FIFO

Done[x]

FIFO

Go

SRAM
(Database)

Fig. 2. Smith-Waterman systolic array with query pipelines in BSW

4

IV. EXPERIMENTAL EVALUATION ON NOVO-G

In this section, we experimentally evaluate the performance
of BSW for single- and multi-FPGA configurations when com-
pared to software tools NCBI BLAST and FASTA’s SSEARCH.
Alignment accuracy (for optimal alignments) is compared only
with SSEARCH. Single-FPGA experiments were performed on
a single Altera Stratix IV E530 FPGA on a GiDEL PROCStar
IV (PS4) board along with a quad-core Intel Xeon E5620 CPU
for host support. Multi-FPGA experiments were performed
targeting multiple E530s, in multiple PS4 boards, in multiple
PS4 compute nodes of Novo-G, the reconfigurable
supercomputer detailed in [9, 10]. Each PS4 node is equipped
with four PS4 boards, two E5620 CPUs with 8 MB cache oper-
ating at 2.40 GHz, and 32 GB of DDR3 memory. BLAST and
SSEARCH baseline performance are measured on these PS4
nodes as well, of course without the aid of FPGAs.

A. Experimental Setup

BSW is best utilized in alignment scenarios where high re-
sult sensitivity and accuracy is required on datasets consisting
of medium to large databases (e.g., chromosomes) and massive
amounts of short- to medium-length queries. Dataset composi-
tion of this type maximizes computational parallelization while
ensuring DMA transfer overheads and software-based calcula-
tions are efficiently hidden behind FPGA processing. To con-
duct our experiments, datasets and runtime parameters were
chosen to illustrate such real-world alignment scenarios, specif-
ically the local alignment of 5’ untranslated region (UTR) se-
quences to whole genome reference assemblies.

Datasets for Experimentation: 5’ UTRs are regions of DNA
that reside immediately upstream of a protein coding region and
are known to play critical roles in post-translational regulation
of gene expression due to the presence of numerous regulatory
elements [14]. The average length of 5’ UTR sequences is
relatively consistent across phylogenetically diverse taxonomic
classes, with a median length of approximately 150 nucleotides
in eukaryotes; however, they can range up several thousand
nucleotides in length. In this experiment, we choose two
datasets centered on eukaryotic 5’ UTR sequences. The first set
from The Arabidopsis Information Resource (TAIR) consists of
the Arabidopsis thaliana reference genome and its 5’ UTRs
[15]. The second dataset consists of the soybean genome
assembly Glycine max from Phytozome [16]. The genome of G.
max, consisting of 975 Mbp in 20 chromosomes with additional
repetitive sequence information in unmapped scaffolds, was
selected as a case study for performance with larger databases.
Similar to A. thaliana, the selected sequences for G. max are a
subset of the 5’ UTR sequences from its genome assembly.

From each of the two chosen datasets for experimentation, a
random sampling of 5’ UTRs between 128 and 256 bp from all
available UTRs is performed to build our query sets. This
filtering is done to reduce variance in runtime performance. For
both query sets, shorter sequences tend to appear in larger
quantities, enabling and encouraging a BSW load-balancing
strategy elaborated on in BSW’s multi-FPGA analysis. In order
to evaluate for potentially real-world evolutionary variance,
randomly distributed fixed mutation rates of 0%, 1%, and 10%
were applied to the 5’ UTR sequences in different experiments.

Parameter Selection: Runtime parameters for BLAST require
modification from the defaults in order to suit the shorter length

queries in our datasets. Scoring parameters for affine-gap runs
are set as -reward 1, -penalty −3, -gapopen 5, and -gapextend 2.
Linear-gap experiments modify the gap penalties to −6, −6. Soft
masking (-soft_masking) and filtering (-dust) are disabled for
these datasets. To account for the possibility of short alignments
with high E-values simply due to the increased probability of
the alignment occurring randomly, as well as higher mutation
rates in the 10% mutation set, the E-value threshold (-evalue) is
set to 100. UTR region similarity search in a comparative
genomics setting would expect higher levels of dissimilarity
such that a high E-value is acceptable. Experiments are
performed for word sizes (WS) 7 and 11. While WS 7 is con-
sidered appropriate for these relatively short sequence datasets,
we provide performance results for WS 11 in order to illustrate
the significant effect that WS can have on BLAST performance.

For SSEARCH threading is set to 1 to determine baseline
characteristics. Trials with SSEARCH at the default of 16
threads shows a sub-linear improvement between 4.6 and 4.9
when compared to single-thread execution (refer to timing justi-
fication in appendix).

B. Experimental Evaluation

Tables I and II (appendix) present execution times (in
[h:]mm:ss format) for the previously discussed experiments
using affine- and linear-gap models for NCBI BLASTn version
2.2.24+, FASTA SSEARCH version 36.3.5a, and BSW on No-
vo-G. BSW results are presented in several configurations: sin-
gle Altera Stratix IV E530 FPGA; single PS4 board consisting
of 4 FPGAs; single Novo-G PS4 node consisting of 16 FPGAs;
and finally, four PS4 nodes with 64 total FPGAs.

Subsets of the appendix table data are plotted in Figures 4
(BSW performance vs. BLAST) and 5 (vs. SSEARCH). The
dashed line on each graph at 16 FPGAs denotes the speedup of
a single cluster node vs. the software baselines, also on one
node. Points above 16 FPGAs are shown to illustrate the scala-
bility of BSW, and thus the 64-FPGA configuration is executed
on four cluster nodes while the software baselines are still exe-
cuted (normalized) on only one node.

Mutation Effect on Performance: Execution times from Tables
I and II for BLAST show several trends. Most significantly, as
the mutation rate increases, run time decreases. This decrease is
attributed to the number of alignments identified and reported.
With 0% mutation, all UTRs will match identically to the ge-
nome assembly they were originally extracted from, but may
align to several other locations triggering additional computa-
tion. When applying a 1% mutation rate, several of these extra-
neous alignments begin to differentiate enough such that they
are no longer considered significant. With an applied 10% rate,
significantly sufficient, randomly distributed, genetic variation
reduces the number of relevant alignments and decreases execu-
tion time.

In all tested scenarios, the execution times of SSEARCH
remain fairly constant with increasing mutation rate. It is only
observed with 10,000 queries that higher mutation rates cause a
slight performance increase due to slightly fewer detected
alignments; however, as SSEARCH still performs a SW
alignment between the subject and query, runtimes are roughly
estimable. With each magnitude increase in the number of que-
ries, all SSEARCH runs predictably increase by approximately
the same magnitude.

5

Single-FPGA Performance: With a single FPGA, BSW per-
forms favorably vs. BLAST and SSEARCH for both genomes.

 For affine-gap experiments, speedup vs. BLAST is 34 and
21 for mutation rates of 0% and 10% with A. thaliana, and
speedup is 24 and 18 with G. max, as shown in Figure 4.

 BSW performance gains vs. SSEARCH are 35 and 33 for
A. thaliana and G. max, as shown in Figure 5.

The SW hardware core in BSW can be configured with either
affine-gap or linear-gap hardware. The linear-gap hardware,
however, is more area efficient and should be used when da-
tasets are not expected to have significant insertions/deletions
such as with these UTRs. The core, when configured for linear-
gap, can pack more processing elements onto the device due to
the area reduction and can be clocked at a higher frequency for
improved performance.

 For linear-gap experiments, single-FPGA speedup vs.
BLAST is 59 and 36 for mutation rates of 0% and 10%
with A. thaliana. Speedup is 42 and 32 with G. max.

 Performance improvement of BSW over SSEARCH for
linear-gap calculations also experiences a substantial in-
crease to 63 for A. thaliana and 60 for G. max.

Multi-FPGA Performance: For single-FPGA executions,
BSW uses a hardware core with pipeline lengths equal to the
longest query length in order to support the entire set of queries.
When moving to multiple FPGAs, the same hardware core may
be used for all FPGAs, but a different load-balancing strategy is
beneficial due to varying query length. A configuration with
shorter pipelines limits the max query length a particular core
can process, but allows for additional pipelines to be instantiat-
ed. With multiple FPGAs, short-length queries can be mapped
to FPGAs loaded with short-length pipelines while longer que-
ries can be mapped to FPGAs with longer pipelines. This

strategy is used in BSW for all multi-FPGA experiments. With
four FPGAs, the query-length range of 128–256 is divided
equally into four intervals of 128–160, 161–192, 193–224, and
225–256, with each FPGA assigned an interval. FPGAs with
smaller pipelines can replicate more of them and, in the case of
affine-gap experiments, the hardware core with 160-length
pipelines is successfully replicated 10 times to maximize area
utilization whereas the 256-length pipelines can only be repli-
cated 6 times. Maximum clock frequency for these affine-gap
cores remains fairly consistent around 180 MHz. Since linear-
gap calculations require less hardware, pipelines can be repli-
cated further and clocked higher. The 160-length pipelines are
replicated 13 times and the 256-length pipelines are replicated 9
times, averaging a new maximum operating frequency of 220
MHz. By distributing the queries via length onto the appropriate
FPGAs, this load-balancing strategy allows us to better utilize
the FPGA resources and attain super-linear speedup when going
from one to four FPGAs for all 10,000-query experiments com-
pared to a straightforward linear speedup methodology whereby
the longest pipeline length is used for all four FPGAs. Scalabil-
ity beyond four FPGAs is achieved by replicating this configu-
ration to larger granularities: one-node experiments consist of
four boards each processing a specific range of lengths and
four-node experiments repeat the same with each node pro-
cessing their range of queries.

 For A. thaliana, BSW speedup vs. BLAST at one node
consisting of 16 FPGAs is at least 498 for affine-gap 0%
mutation and 729 for linear-gap 0% mutation.

 Speedup vs. SSEARCH averages 513 for affine-gap and
782 for linear-gap with A. thaliana.

 BSW speedup vs. BLAST for 10,000 queries on the larger
G. max for four nodes (64 FPGAs) is at least 1530 (affine
gap, 0%) and 2337 (linear gap, 0%).

Fig. 4. Speedup of BSW vs. NCBI BLAST (WS 7)

16

32

64

128

256

512

1024

2048

1 2 4 8 16 32 64

Sp
e

e
d

u
p

Number of FPGAs

A. thaliana

Affine 0%

Affine 10%

Linear 0%

Linear 10%

16

32

64

128

256

512

1024

2048

1 2 4 8 16 32 64

Sp
e

e
d

u
p

Number of FPGAs

G. max

Affine 0%

Affine 10%

Linear 0%

Linear 10%

Fig. 5. Speedup of BSW vs. SSEARCH

16

32

64

128

256

512

1024

2048

1 2 4 8 16 32 64

Sp
e

e
d

u
p

Number of FPGAs

A. thaliana

Affine

Linear

16

32

64

128

256

512

1024

2048

4096

1 2 4 8 16 32 64
Sp

e
e

d
u

p
Number of FPGAs

G. max

Affine

Linear

6

 Speedup vs. SSEARCH averages 2096 and 3308 for af-
fine and linear-gap experiments with G. max.

BSW Timing Analysis: Note that BSW execution times are
constant regardless of mutation rate and scale linearly with the
number of queries divided by the number of pipelines
instantiated on the FPGAs. Thus, an equation can be used to
estimate the runtime of BSW for large databases:

𝑡𝑖𝑚𝑒𝐵𝑆𝑊 ≈ ⌈
𝑞𝑢𝑒𝑟𝑖𝑒𝑠

𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠
⌉ ×

𝑠𝑖𝑧𝑒𝑑𝑏
𝑓𝑟𝑒𝑞𝑐𝑙𝑘

+ 𝑡𝑖𝑚𝑒𝑙𝑜𝑎𝑑 

In this equation, the sequential load time is a parameter that
significantly influences the execution of smaller query sets.
BSW consists of two load-time components: database load and
FPGA bitfile load. On program startup, the subject database is
loaded into memory and is heavily influenced by the size of the
reference (e.g., 0.4s for A. thaliana vs. 3s for G. max). The
FPGA bitfile load time is platform dependent (e.g., between 2.3
and 2.7 seconds for PROCStar IVs on Novo-G) and contributes
significantly to the increase of BSW’s execution times for all A.
thaliana experiments at 100 queries and below when transition-
ing from one board to one node (one-node experiments must
perform this bitfile load four times sequentially). Even at 10,000
queries, the sequential load time influences up to 50% of A. tha-
liana runtimes.

BSW Dataset Amenability: The experiments conducted illus-
trate that there are real-world scenarios for sequence alignment
that prove unfavorable for heuristics-based tools such as
BLAST. Other datasets, however, may be more amenable for
these tools than BSW. BSW derives the majority of its perfor-
mance gains from the parallelization of sequence alignment
with multiple queries. The number of query-processing pipe-
lines that can be replicated, however, is directly limited by the
area constraints of the FPGAs and the design parameters used
for alignment (e.g., scoring criteria, gap model). With BSW’s
current SW hardware design, pipeline length equates to the
maximum sequence length that can be processed; however, a
longer pipeline length reduces the design’s routability onto the
FPGA and decreases the maximum number of PEs that can be
routed. As a result, BSW’s performance can be increased as
pipeline lengths are reduced, allowing more of these shorter
pipelines to be successfully replicated. The consequence of this
is that BSW is best used to align relatively short-length queries,
but its performance with long queries is decreased due to a re-
duction in the number of parallel processing pipelines.

V. CONCLUSIONS

In this paper, we presented BSW, our optimal local align-
ment tool featuring a novel and efficient SW hardware-
accelerated core and robust software architecture with BLAST
input/output interfaces and essential alignment statistics. Future
work for BSW includes rigorous verification and debugging,
additional BLAST option support, and official release.

BSW vs. BLAST: Our experiments show that, for specialized
alignment scenarios where high sensitivity is required of
BLAST, BSW offers at least comparable if not better perfor-
mance. And, because of the BLAST-compatible input/output
interfaces and alignment statistics, the optimal alignment output
of BSW is easily integrated with existing BLAST analysis pipe-
lines. Thus, when sensitivity requirements exceed the capabili-

ties of BLAST to fully capture the nuances of underlying data
(i.e., when requirements force the use of tools like SSEARCH
over BLAST), the argument for BSW is even stronger; for ex-
ample, when a desired scoring parameter sensitivity exceeds
that which BLAST allows as valid input (e.g., +1/-3 with gap
penalty of 12/1).

BSW vs. SSEARCH: In all tested situations, BSW perfor-
mance exceeds that of SSEARCH. BSW excels at datasets re-
quiring increased sensitivity/accuracy of results and delivers
impressive performance gains in all scenarios where a user
would require an optimal SW tool such as SSEARCH.

REFERENCES

[1] M. Gross, “Riding the wave of biological data,” in Current Biology, Mar
2011, vol. 21, no. 6, pp. R204–R206. doi:10.1016/j.cub.2011.03.009

[2] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: accelerating
Smith-Waterman protein database search by coupling CPU and GPU
SIMD instructions,” in BMC Bioinformatics, 2013, vol 14, no. 117.
doi:10.1186/1471-2105-14-117

[3] S. Lee, C. Lin, and C. L. Hung, “GPU-based cloud service for Smith-
Waterman algorithm using frequency distance filtration scheme,” in
BioMed Research International, vol. 2013, Article ID 721738, 8 pages,
2013. doi:10.1155/2013/721738

[4] Y. Chen, “A hybrid short read mapping accelerator,” in BMC
Bioinformatics, 2013, vol. 14, no. 67. doi:10.1186/1471-2105-14-67

[5] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” in J. Mol. Biol., 1981, vol. 147, pp. 195–197.
doi:10.1016/0022-2836(81)90087-5

[6] S. F. Altschul et al., “Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs,” in Nucl. Acids Res.,
1997, vol. 25, no. 17, pp. 3389–3402. doi:10.1093/nar/25.17.3389

[7] M. Farrar, “Striped Smith–Waterman speeds database searches six times
over other SIMD implementations,” in Bioinformatics, 2007, vol. 23, no.
2, pp. 156–161. doi:10.1093/bioinformatics/btl582

[8] P. Rice, I. Longden, and A. Bleasby, “EMBOSS: The European
Molecular Biology Open Software Suite,” in Trends in Genetics, 2000
vol. 16, no. 6, pp. 276–277.

[9] A. George, H. Lam, A. Lawande, C. Pascoe, and G. Stitt, “Novo-G: a
view at the HPC crossroads for scientific computing,” in Proc. of the Int.
Conf. on Eng. of Reconf. Sys. and Algs. (ERSA), 2010.

[10] A. George, H. Lam, and G. Stitt, “Novo-G: at the forefront of scalable
reconfigurable computing,” in IEEE Computing in Sci. & Eng. (CiSE),
Jan/Feb 2011, vol. 13, no. 1, pp. 82–86. doi:10.1109/MCSE.2011.11

[11] S. Karlin and S. F. Altschul, “Methods for assessing the statistical
significance of molecular sequence features by using general scoring
schemes,” in Proc. Natl. Acad. Sci., 1990, vol. 87, no. 6, pp. 2264–2268.

[12] T. Rognes, “Faster Smith-Waterman database searches with inter-
sequence SIMD parallelisation,” in BMC Bioinformatics, 2011, vol. 12,
no. 221. doi:10.1186/1471-2105-12-221

[13] C. Pascoe, A. Lawande, H. Lam, A. George, Y. Sun, W. Farmerie, and
M. Herbordt, “Reconfigurable supercomputing with scalable systolic
arrays and in-stream control for wavefront genomics processing,” in
Proc. of Symposium on Application Accelerators in High-Performance
Computing (SAAHPC), Jul 2010.

[14] F. Mignone, C. Gissi, S. Liuni, and G. Pesole, “Untranslated regions of
mRNAs,” in Genome Biology, 2002, vol. 3, no. 3:reviews0004.1.

[15] Carnegie Institution and National Center for Genome Resources, “The
Arabidopsis Information Resource (TAIR): a model organism database
providing a centralized, curated gateway to Arabidopsis biology,
research materials and community,” in Nucl. Acids Res., 2003, vol. 31,
no. 1, pp. 224–228. doi:10.1093/nar/gkg076

[16] Joint Genome Institute and The Center for Integrative Genomics,
“Phytozome: a comparative platform for green plant genomics,” in Nucl.
Acids Res., 2012, vol. 40, no. D1, pp. D1178–D1186.
doi:10.1093/nar/gkr944

This work was supported in part by the I/UCRC Program of the National

Science Foundation under Grant Nos. EEC-0642422 and IIP-1161022.

7

APPENDIX

TABLE I. PERFORMANCE OF LOCAL ALIGNMENT FOR 5’ UTR SEQUENCES WITH AFFINE GAP PENALTIES OF −5, −2

Arabidopsis thaliana vs. A. thaliana five prime UTRs (0% mutation)

Glycine max vs. G. max five prime UTRs (0% mutation)

No. of

Queries
 BLAST

word size 11

BLAST

word size 7
SSEARCH

BSW FPGA Configuration
 BLAST

word size 11

BLAST

word size 7
SSEARCH

BSW FPGA Configuration

1 4 4×4 4×4×4

1 4 4×4 4×4×4

10

00:28 00:36 00:37 00:04 00:04 00:11 00:11

00:19 01:10 04:53 00:15 00:15 00:22 00:21

100

01:27 02:45 06:26 00:15 00:05 00:11 00:11

04:13 13:43 50:06 01:42 00:35 00:22 00:22

1,000

14:02 31:20 1:04:26 01:54 00:28 00:16 00:12

1:54:37 3:49:56 8:13:01 15:13 03:24 01:06 00:23

10,000

2:13:47* 10:22:24* 10:41:24 18:32 04:23 01:15 00:27

9:05:39* 59:54:29* 82:06:15 2:30:25 31:48 08:08 02:21

Arabidopsis thaliana vs. A. thaliana five prime UTRs (1% mutation)

Glycine max vs. G. max five prime UTRs (1% mutation)

No. of

Queries
 BLAST

word size 11

BLAST

word size 7
SSEARCH

BSW FPGA Configuration
 BLAST

word size 11

BLAST

word size 7
SSEARCH

BSW FPGA Configuration

1 4 4×4 4×4×4

1 4 4×4 4×4×4

10

00:27 00:35 00:37 00:04 00:04 00:11 00:11

00:19 01:09 04:53 00:15 00:15 00:22 00:21

100

01:22 02:39 06:26 00:15 00:05 00:11 00:11

04:05 13:47 50:06 01:42 00:36 00:22 00:22

1,000

13:05 29:49 1:04:26 01:54 00:28 00:16 00:12

1:43:02 3:34:04 8:12:56 15:13 03:24 01:06 00:23

10,000

2:03:03* 9:54:06* 10:41:24 18:32 04:23 01:15 00:27

8:35:14* 58:33:43* 82:05:58 2:30:25 31:48 08:08 02:22

Arabidopsis thaliana vs. A. thaliana five prime UTRs (10% mutation)

Glycine max vs. G. max five prime UTRs (10% mutation)

No. of
Queries

 BLAST
word size 11

BLAST
word size 7

SSEARCH
BSW FPGA Configuration

 BLAST
word size 11

BLAST
word size 7

SSEARCH
BSW FPGA Configuration

1 4 4×4 4×4×4

1 4 4×4 4×4×4

10

00:13 00:20 00:37 00:04 00:04 00:11 00:11

00:13 00:57 04:52 00:15 00:15 00:22 00:21

100

00:45 01:50 06:26 00:15 00:05 00:11 00:11

01:53 10:03 49:58 01:42 00:36 00:22 00:22

1,000

06:32 20:23 1:04:24 01:54 00:28 00:16 00:12

46:20 2:28:57 8:12:33 15:13 03:24 01:07 00:23

10,000

1:11:28 6:23:57 10:40:58 18:32 04:23 01:15 00:27

4:26:34* 44:13:32* 82:03:53 2:30:25 31:48 08:08 02:22

TABLE II. PERFORMANCE OF LOCAL ALIGNMENT FOR 5’ UTR SEQUENCES WITH LINEAR GAP PENALTIES OF −6, −6

Arabidopsis thaliana vs. A. thaliana five prime UTRs (0% mutation)

Glycine max vs. G. max five prime UTRs (0% mutation)

No. of
Queries

 BLAST
word size 11

BLAST
word size 7

SSEARCH
BSW FPGA Configuration

 BLAST
word size 11

BLAST
word size 7

SSEARCH
BSW FPGA Configuration

1 4 4×4 4×4×4

1 4 4×4 4×4×4

10

00:14 00:21 00:37 00:04 00:04 00:11 00:11

00:18 01:09 04:51 00:13 00:13 00:20 00:21

100

00:43 02:01 06:25 00:09 00:05 00:11 00:11

03:27 13:05 49:48 00:57 00:22 00:21 00:22

1,000

06:46 24:14 1:04:10 01:04 00:18 00:14 00:11

1:06:34 3:07:45 8:10:59 08:20 01:59 00:50 00:23

10,000

47:49* 9:55:33* 10:38:55 10:08 02:40 00:49 00:20

3:14:57* 57:46:50* 81:47:47 1:22:04 19:16 05:00 01:29

Arabidopsis thaliana vs. A. thaliana five prime UTRs (1% mutation)

Glycine max vs. G. max five prime UTRs (1% mutation)

No. of

Queries
 BLAST

word size 11

BLAST

word size 7
SSEARCH

BSW FPGA Configuration
 BLAST

word size 11

BLAST

word size 7
SSEARCH

BSW FPGA Configuration

1 4 4×4 4×4×4

1 4 4×4 4×4×4

10

00:14 00:21 00:37 00:04 00:04 00:11 00:11

00:17 01:08 04:51 00:13 00:13 00:21 00:21

100

00:40 01:57 06:25 00:09 00:05 00:11 00:11

03:20 12:55 49:48 00:57 00:22 00:21 00:22

1,000

06:15 23:04 1:04:11 01:04 00:18 00:14 00:11

1:01:10 2:57:11 8:10:59 08:20 01:59 00:49 00:22

10,000

44:33* 9:31:11* 10:38:54 10:08 02:40 00:49 00:20

3:03:56* 56:33:26* 81:47:40 1:22:04 19:15 05:00 01:29

Arabidopsis thaliana vs. A. thaliana five prime UTRs (10% mutation)

Glycine max vs. G. max five prime UTRs (10% mutation)

No. of

Queries
 BLAST

word size 11

BLAST

word size 7
SSEARCH

BSW FPGA Configuration
 BLAST

word size 11

BLAST

word size 7
SSEARCH

BSW FPGA Configuration

1 4 4×4 4×4×4

1 4 4×4 4×4×4

10

00:06 00:13 00:37 00:04 00:04 00:11 00:11

00:12 00:57 04:51 00:13 00:13 00:21 00:21

100

00:22 01:28 06:24 00:09 00:05 00:11 00:11

01:42 10:03 49:46 00:57 00:22 00:21 00:22

1,000

03:10 17:23 1:04:12 01:04 00:18 00:14 00:11

30:32 2:19:00 8:10:47 08:20 01:59 00:50 00:23

10,000

35:15 6:06:23 10:38:47 10:08 02:40 00:49 00:20

1:37:27* 44:15:11* 81:45:54 1:22:05 19:15 05:00 01:29

Scoring parameters: +1, −3 with gap penalties of −5, −2 for affine-gap experiments and −6, −6 for linear-gap experiments

BSW FPGA configurations: FPGA (1), board (4), node (4×4), four nodes (4×4×4)

* Program execution killed by operating system due to excessive memory use (>32GB).

BLAST execution times are heavily affected by heuristic parameter settings. The cumulative effect on execution time of deviating from each parameter’s default setting is presented here.

Baseline execution time is 16:12 (A. thaliana, 1000 queries, 0% mutation, word size 7). Increasing E-value threshold to 100 increases runtime penalty by 2 (32:01). Disabling

masking and filtering increases runtime penalty by 3 (1:27:45). Total performance penalty of these parameters is approximately 6 from the defaults.

For A. thaliana UTRs (0% mutation, affine gap), SSEARCH with its default of 16 threads finished execution in 00:08, 01:18, and 13:00 for 10, 100, and 1000 queries, a sub-linear improvement

between 4.6 and 4.9 when compared to single-thread execution. Presented results can be scaled appropriately to account for multi-threading in SSEARCH.

Example runtime commands for affine-gap experiments with Arabidopsis thaliana:

bsw -rbf 2x6x256_180MHz.rbf -clk 180 -db Arabidopsis.bswdb -query TAIR10_five_prime_UTRs.fasta

blastn -evalue 100 -word_size 7 -reward 1 -penalty -3 -gapopen 5 -gapextend 2 -soft_masking false -dust no -db Arabidopsis -query TAIR10_five_prime_UTRs.fasta

ssearch36 -E 100 -3 -b 1 -d 1 -r +1/-3 -f -3 -g -2 -T 1 TAIR10_five_prime_UTRs.fasta Arabidopsis.fa

