FPGA-Based HPC Application Design for
Non-Experts

David Uliana, Krzysztof Kepa, and Peter Athanas
Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA
{duliana kepa,athanas} @vt.edu

Abstract—This work presents bFlow, an FPGA development
framework for the rapid prototyping and implementation of
hardware accelerators for hybrid computing platforms. This
framework makes use of an abstracted, graphical front-end
usable by those without computer engineering backgrounds,
as well as an accelerated back-end that reduces compilation
times, increasing design turns-per-day. bFlow’s performance,
usability, and application to the acceleration of big-data life-
science problems verified by participants of the NSF-funded Sum-
mer Institute organized by the Virginia Bioinformatics Institute
(VBI). In roughly one week, a group of four non-engineering
participants made modifications to a reference Smith-Waterman
implementation, adding functionality and scaling throughput by
a factor of 4 to 600 million base pairs per second.

I. INTRODUCTION

In the era of “data everywhere,” information has gone
from scarce to incredibly abundant. For instance, decoding the
genome of a single human individual involves the analysis
of three billion DNA base pairs. The prevalence of valuable
and complex datasets of this sort is increasing at a rising rate.
When the Sloan Digital Sky Survey (SDSS) began collecting
data in 2000, it amassed more information in its first few weeks
than all the data collected in the history of astronomy [1]. At
a rate of about 200 GB per night, SDSS has amassed more
than 140 terabytes of information. Its successor, the Large
Synoptic Survey Telescope, anticipated to come online in 2016,
is expected to acquire that amount of data every five days [2].
In 2010, main detectors at the Large Hadron Collider (LHC)
produced 13 petabytes (13 x 10! bytes) of data [3]. In these
examples, “big data” refers to high complexity in addition
to big volume. This trend is growing and creates the need
for exceptional computing performance in order to efficiently
process large quantities of data within tolerable times.

On the forefront of big-data computation are domain
experts, e.g. bioinformaticians who explore novel genome
hypotheses by analyzing massive amounts of data [4]. Such
domain experts may be skilled programmers; however, their
productivity—hypothesis discovery and verification rate—is lim-
ited by the performance limitations of available computing
resources. The architecture of data-center class computing plat-
forms, even high-performance servers or clusters, is designed
for speed over a general mix of problems, and tailoring such
platforms to domain-specific data structures and algorithms,
such as DNA/protein sequence alignment [5], in an efficient,
high performance manner, is not straightforward.

Heterogeneous computing machines like the Convey
Hybrid-Core (HC) servers have potential to address this gap.
These platforms enable the creation of application-specific
accelerators that are tightly coupled with general-purpose
processing resources. This tight coupling is achieved through
the use of custom instructions and cache-coherent, shared
memory space [6]. Unfortunately, development flows for such
accelerators require extensive computer engineering and digital
design expertise, including practical knowledge of a hardware
description language such as Verilog and VHDL. These pre-
requisites are prohibitive for most domain-experts, including
most experts in the life sciences community.

In this work, a development flow is proposed for hybrid
computing systems like the Convey Hybrid-Core platforms.
This approach aids non-engineers from the life sciences com-
munity in their creation of dedicated hardware accelerators,
with the focus of avoiding the computational bottlenecks
typical in their field. Consequently, the proposed flow should
help such domain experts address ‘-omics’ problems on an
unprecedented computational scale [4].

Graphical design environments often provide a more intu-
itive mapping to parallel hardware than text- based languages;
hence, a graphical desktop tool was selected as the design
front-end of this flow. Specifically, DatalO’s Azido (Figure 1)
was chosen to fill this role. The accelerator designs are de-
scribed in Azido in algorithmic form built on simple canonical
primitives. Furthermore, the environment is structured in a
manner that facilitates design targeting a variety of compu-
tational resources (e.g. FPGAs, CPUs, GPUs) using a single
environment.

To target the Convey HC architecture, an Azido System
Description was prepared. This architecture description acts as
a plugin to Azido, encapsulating specifications of the platform
organization and details about each of the core interfaces—
namely the custom instruction dispatch, memory, and plat-
form management interfaces. Furthermore, some interfaces are
abstracted to simpler, higher level structures to ease devel-
opment. For example, high throughput access to the Convey
co-processor memory are abstracted to data stream sink and
source objects defined within the system description.

All of these abstractions were complemented with software
helper routines (C/C++) that abstract the co-processor API into
a framework more intuitive to the big-data user.

The proposed approach relies on the following assump-
tions:

5313

BUAR &o @

sw_pipeline_parallel

...... =

Fig. 1. The Azido graphical algorithm description environment.

e Convey co-processor FPGA resources are the largest
devices in the Xilinx Virtex-5 and Virtex-6 families,
exceeding the requirements of many accelerators. Thus,
some space and performance could be readily sacrificed
for the sake of increasing the usability of the design tools.

e Azido’s graphical, Implementation-Independent Algo-
rithm Description Language (I2ADL) exposes the details
of an algorithm while hiding the underlying implementa-
tion complexities. This core syntax, building on simplified
system description abstractions, is intuitive and simple to
the extent that a non-engineer domain expert with general-
purpose programming expertise can use it to design
hardware logic.

The rest of the paper is organized as follows. Section II
provides some background and discusses the need for usable
design environments targeting big-data hybrid-core computing
platforms, as well as existing platforms and tools, Section III
contains the approach taken in this work to address this
need, and Section IV presents both qualitative and quantitative
results of this effort. Conclusions and future work are given
in Section V.

II. BACKGROUND

Design productivity for FPGA-based computing has suf-
fered from the contemporary ASIC “design productivity gap”
and has unique needs and opportunities not adequately ad-
dressed by existing FPGA design tools. In [7] Nelson et
al. proposed a productivity model that exposes three key
contributors to high design productivity: multi-level design
reuse, high-level design abstractions, and a more interactive
verification environment which increases the number of devel-
opment turns per day. All of these are necessary to improving
design productivity, e.g. the use of high level (above HDL)
languages would significantly reduce functional simulation
time, thereby increasing turns per day. Also, describing designs
in a hierarchical, high level language can promote reuse by
making designs more portable.

High-level synthesis is a very active area of research,
and many high level design tools and approaches exist (e.g.
ImpulseC, AutoESL, SysGen, catapultC). Primarily, the focus
of these tools is to reduce time to solution for designers
who have considerable computer engineering expertise. While

Identify key Extract C Implement Run kernel on
application kernel for kernel in coprocessor
kernel functional Verilog using hardware
simulator Xilinx ISE
Aggligation Application Application Application
call kernel() copcall(CAEP) copcall(CAEP) copcall(CAEP)
kernel code
C]
{ v)
HC1 Funct HC1 Funct HC1
Sim Sim Hardware
scalar instr. scalar instr.
memory memory
Host I/F Host I/F
¥ ¥ VPI
C functional Verilog on Custom
model external HW personality
simulator

Figure 6 - PDK Design Flow

Fig. 2. Overview of Convey’s Personality Development Kit, a flow for the
development of custom personalities [11].

working from a high level of abstraction and guaranteeing
functionally correct output, they require design input (e.g.
pragma statements) concerning low-level hardware detail in
order to produce efficient RTL output. Hence, such languages
are generally inappropriate for use by those in the life-
sciences community, which is comprised primarily of software
programmers with limited hardware design experience.

A. Convey personality design flow

The use of heterogeneous computing architectures like
the Convey HC platform (CPU + FPGA) for fixed-point
algorithms [8] or Nebula (CPU + GPU) for floating point [9],
constitutes one approach to meeting such big-data processing
demands. Convey Computer’s Hybrid-Core family of platforms
are examples of such architectures. The first generation of these
Hybrid-Core servers, the HC-1 and HC-1ex, are considered in
this work.

The Convey HC-1 system consists of a commodity Intel
Xeon host server extended with a custom co-processor board.
This co-processor board consists primarily of four large FP-
GAs (Xilinx part XC5VLX330) called Application Engines
(AE), augmented with cache-coherent, high bandwidth mem-
ory access (8 memory controllers per AE). Each configuration
of the Convey co-processor is called a “personality,” and
provides application-specific functions available to the host
server processor as custom instructions [10].

Convey’s Personality Development Kit (PDK), a flow for
the development of custom personalities, is illustrated in Fig-
ure 2. The first step of this development process is to identify
the target application’s computational kernel and performance
bottlenecks, analyzing heavily-used data structures and algo-
rithm parallelism. Options for implementing the application in
hardware are then evaluated. This requires knowledge of the
hardware architecture and the FPGA resources available to the
personality. Once an implementation strategy is established,
the functions performed by the hardware design can then be
mapped to the set of instructions in the Convey Instruction Set
Architecture reserved for custom personalities. The customs
instructions available to a PDK personality are defined in [11].

Cache coherent memory

Coprocessor personality

Software APl | Personality IF
I
Software | Hardware

Fig. 3. Overview of the Convey hardware-software interface.

Prior to actual hardware implementation, a software model
emulating the desired co-processor function is developed for
the purpose of verifying the hardware kernel. Convey provides
an simulation environment which allows rapid prototyping
of both the hardware and software components of a custom
personality. The provided simulation environment includes
Verilog models of AE instruction dispatch, register states, and
the memory subsystem. The software model is then simulated
along with the rest of the system to prove and debug the kernel
architecture. Once the personality software model is in place,
HDL development is begun. The accelerator functionality is
specified in HDL (Verilog or VHDL) or synthesized netlists
(e.g. EDIF). the implementation flow results in a compressed
personality package. Convey provides a hardware simulation
environment with bus-functional models of all AE interfaces,
in order to support functional verification of the accelerator
HDL specification. The architecture simulator is used to pro-
vide stimulus to the HDL simulation through a Verilog Proce-
dural Interface (VPI). Finally, the accelerator functionality is
implemented by the Xilinx FPGA design flow and tested on the
Convey co-processor hardware. The Personality Development
Kit provides Verilog user logic wrappers that facilitate memory
access and communication between the host application and
the kernel accelerator.

Figure 3 displays the architecture of the Convey hardware-
software interface, which joins the host software application
with the co-processor personality, which executes in parallel
on up to four AE FPGAs. This architecture provides significant
computational capability; however, the PDK does not address
the programming needs of big-data users, who typically do not
have knowledge of HDL system descriptions nor experience
in digital systems design and FPGA implementation flows.

B. Azido system description

Azido (Figure 1) is a graphical, object-oriented design envi-
ronment based on the Implementation Independent Algorithm
Description Language (I2ADL). The tool attempts to abstract
the low-level complexities of digital hardware design to a
high level more intuitive to a user without hardware design
experience. Furthermore, the tool simplifies and accelerates
hardware design by encouraging object reuse, and providing
an extensible core library of implementation-independent al-
gorithmic objects, known as the CoreLib. Bitstream imple-
mentation of these algorithms is accomplished through the
use of Azido System Descriptions—behind-the-scenes, script-
based implementation “plugins” that both describe the target

Legend: C] Process a Data —> DataFlow
Azido Desktop Environment
G
Interaction
Y
[Synthesis (HC) } [Simulation (x86) }
EDIF Netlist
4 Local Machine e,

Development

¥ Remote

Host C/C++
Application

Verilog
Wrap Logic

Personality

Compilation

J433sn|) 2INdWoD Xeymopeys

Personality Release
e (cae_fpga.tgz)

Compilation
(cnycC)

Host Executable

EDIF to Verilog
Conversion

Verilog Netlist

<

System
Simulation

<
| e

Convey Hybrid-Core Platform

Fig. 4. Movement of data within bFlow.

system architecture and consume a synthesized logical netlist
generated by Azido, producing a configuration for a specific
platform.

Among several existing graphical design environments,
Azido was selected as a front-end for three primary reasons:
1) it provides a very flexible design environment and core
library capable of servicing many application domains at both
low and high levels of abstraction, 2) the System Description-
based implementation framework creates opportunities for
easily extending the tool to support many target platforms, and
3) in addition to standard schematic-capture abilities, Azido
provides some dynamic features, including automatic data type
conversion and graphical polymorphism. These characteristics
distinguish Azido from tools such as LabVIEW [12] and
Simulink [13]. The former is similar in terms of the usability
of the design environment, but is constrained to specific target
platforms. The latter, though capable of producing platform in-
dependent HDL, lacks most of the dynamic features mentioned
above.

C. bFlow Contributions

The bFlow approach provides a simplified and portable
accelerator development flow which supports rapid prototyping

of big-data algorithms in hardware. Accelerator design pro-
ductivity is improved by using an intuitive, graphical front-
end (Azido) and hiding low-level details of the hardware
implementation (e.g. provision of memory stream abstraction).
A reduction in compilation time of the accelerator is achieved
by employing incremental implementation strategies facilitated
by qFlow [14] and Xilinx Hierarchical Design Flow [15].
Furthermore, because of the graphical front-end and abstract
objects, the flow is better-suited for designers without HDL
expertise.

This framework supports the growth of the third-party
“personalities ecosystem” through the contribution of custom
accelerator implementations, in a way similar to that observed
in the Linux community [16]. Thus, no user is limited to
the closed-source personalities provided by the system vendor.
Finally, the bFlow approach is portable—it supports local design
and remote accelerator implementation using an HPC cluster
(e.g. VBI's Shadowfax compute cluster [17]), as well as
remote execution on the Convey Hybrid-Core platforms. The
designer need only install Azido and the Convey HC System
Description on his local machine.

III. RAPID B1I0-ACCELERATOR DEVELOPMENT FLOW

The approach is divided into two efforts—the assembly of
a usable front-end design environment and the development
of a fast compilation back-end that increases productivity. The
movement of data within the final flow, at a high level, is shown
in Figure 4. Algorithm design is performed within Azido on
the user’s local machine. Upon completion of synthesis, which
is performed by Azido, an EDIF netlist is transferred to VBI’s
Shadowfax cluster [17], where it is combined with custom
wrap logic and implemented to a bitstream using an accelerated
compilation process or Convey’s standard flow. The generated
personality is packaged and placed in shared storage accessible
to VBI’s Convey HC servers. Given the software for the host
CPU compiled with the Convey C/C++ compilers, the design
can be executed on the HC platform.

Local testing of individual logical blocks is accomplished
by Azido’s built-in x86 system description, and rough system
simulation can be done locally by instantiating Component
Object Model (COM) objects throughout the design. For ex-
ample, file streaming COM objects can be used to approximate
the functionality of the memory stream objects in the HC
system description. Alternatively, cycle-accurate simulation of
the entire HC system (host CPU + FPGA application engines)
can be performed on the server itself using Convey’s supported
simulation flow and a structural Verilog netlist of the Azido
design, generated by an EDIF-to-Verilog conversion utility
developed in-house.

A. Convey HC-1 system description and software helper rou-
tines

The assembly of a design environment usable by those
without digital design expertise was accomplished through
the use of Azido with a Convey HC-1 system description
and a collection of convenient software routines. The system
description can be divided into three distinct components:
1) a communication implementer for the transfer of diag-
nostic probing and user stimulation between Azido and the

personality at run-time, 2) an abstracted view of the co-
processor dispatch interface, and 3) streaming abstractions
for the memory interface. Compilation of the Azido design
produces a Hybrid-Core personality, the architecture of which
is shown in Figure 5.

Desktop Environment Convey Hybrid-Core Server

Azido 1 Host CPU

A
. MI::{M'IP
v lay

Co-Processor

Fig. 6. Azido/Hybrid-Core communication architecture.

1) Azido communication implementer: The first component
is invisible to the designer, and consists of communication of
data between the Azido environment and the personality for
the purpose of run-time diagnostic probing and stimulation
of the design. This is achieved through the use of a COM
object instantiated in the Azido System Description, an SSH
tunnel from the designer’s desktop to the HC server, a utility
running on the Convey x86 host processor, and a Convey-
provided telnet server, mpip, which provides access to the
HC’s management ring interface. Azido transmits user input
from the run-time widget window to the COM object, which
in turn transfers the data through the tunnel to the relay utility
on the Convey platform host processor. This process sends
register read/write commands through the mpip server to the
management ring, both capturing and exciting signals in the
design (see Figure 6).

AEGReg00- Cmdio. ExecOone.
{w’rite Headk [Star+ {Cmplt
AEGRegOl Cmdot
{w’rite Headk [Star+

AEGRegED: Crmd21
{w’rite Headk [Star+

Collection of Convey dispatch interface abstractions in Azido.

Fig. 7.

2) Convey dispatch interface abstraction: The second con-
sists of the Azido abstraction of the AE dispatch interface
(Figure 7). Logic external to the Azido-generated netlist de-
codes incoming dispatch instructions and presents a simplified
interface to the Azido designer. The AE general (AEG) regis-
ters are exposed as simple read/write blocks in Azido, and the
co-processor custom instructions are exposed as blocks with
a “Start” output. Management of the co-processor idle state is
implemented external to the Azido design.

3) Memory streaming abstraction: Lastly, to conceal the
complexities of random memory access and address arithmetic,
bFlow contains a simplified, streaming abstraction to the
memory controllers available to each AE. These “streamers”
present two abstractions to the designer: (1) a “source” module
and (2) a “sink” module, to be used to stream a block of data
from memory into the AE and stream data out to memory,
respectively. Figure 8 provides a usage example of the Azido

Convey Hybrid-Core Server

Dispatch
I/F

Co-Processor

Host
CPU

Application Engine (AE) FPGA

Azido Wrapper (aztop_wrap)

Stream
src/snk

Instr.
Decode

Stream
Src/Snk

Azido-Generated

Netlist (aztop) MCI/F

Mgmt.
I/F

Stream

Memory Subsystem N

Fig. 5. The bFlow personality application engine (AE) architecture.
IMemStreamSnk.
IvlemStreamSie StartAddr
=y = Start Addr Diatal
— Fieset
= Gio Donel
Euzy LET
Fig. 8. Usage example of the memory stream sink and source objects in

Azido. This algorithm bitwise inverts a word of memory each time the Go
input of the MemStreamSrc object is asserted.

modules for these two abstractions, both of which comply with
Azido’s GDBW flow-control convention.

In addition to the System Description objects available
to the designer within Azido, several software routines were
developed to simplify the configuration and execution of a
custom personality. This is accomplished by wrapping the
Convey-provided, low-level assembly routines in higher-level,
C/C++ routines contained in a C++ class. These routines
include helper functions for reading and writing the AEG
registers, calling co-processor custom instructions, and copying
data to/from co-processor memory. Furthermore, a subclass
containing additional abstractions that simplify interaction with
the Azido streaming objects is also provided.

B. Extension of Smith-Waterman reference implementation by
non-CS/CE users

To verify the usability and productivity that bFlow sup-
ports, it was placed in the hands of four non-engineering
participants of the NSF-funded Summer Institute organized by
VBI. Prior to the start of the event, the students were asked
to review [18] and gain a basic understanding of the systolic
array approach to implementing the Smith-Waterman sequence
alignment algorithm. The students were given a reference
implementation of the Smith-Waterman matrix fill operation,
and tasked with accelerating the design and extending its
functionality.

1) Simple systolic array, wavefront computation of scoring
matrix: The Smith-Waterman algorithm [19], a local sequence
alignment algorithm proposed in 1981 and well known to
the bioinformatics community, is often used to compute the

Src/Snk.

i

similarity between two nucleotide or protein sequences, S
and 7', by computing a scoring matrix of size S x T'. This
work considers a common case in which S, the query, is
quite short—at most one or two thousand bases long, and T,
the reference, is quite long—millions of bases. This algorithm
yields the optimal local alignment, given a character substitu-
tion matrix and affine gap penalties. The algorithm consists of
two steps: 1) computation of the scoring matrix and location
of best alignment and 2) the traceback of the best alignment
starting from the matrix cell with the highest score. Since
performing the traceback operation requires only the subset
of the scoring matrix containing the best alignment, this step
is often postponed until the location of the best alignment is
determined, which can be done by tracking the highest-scoring
cell during the first step.

A reference implementation (Figure 9) based on [18] was
created in the Azido environment and given to the participants
along with the task of adding functionality and improving
performance. The students were given approximately one week
to modify the design, and restricted to only two memory
streamer objects.

Smith-Waterman Azido Design

Memory
Porams: Streamer
aryseqBaseAddr

anySeglen

Query Sequence Collector

Streamer

Systolic Cell Array

‘ Results ‘
‘ Collector "

Fig. 9. High-level architecture of the reference systolic array implementation
of the Smith-Waterman scoring matrix fill operation. This was given to
the NSFSI participants with the task of adding functionality and improving
throughput within about a week.

C. Fartial implementation flows with qFlow and Partitions

Acceleration of personality compilation is achieved by two
methods, both partial implementation flows. Both are frame-
works, accomplishing improved build times through high-level
management of the implementation process, making use of
Xilinx ISE for core implementation functionality (synthesis,

placement, routing, etc.). The first is an application of the
Xilinx Hierarchical Design Partitions flow [15], while the
second involves the use of gFlow, a back-end compilation
framework [14]. Both methods exploit the high-level archi-
tecture of all Convey personalities—specifically, the inclusion
of interface logic that remains nearly static throughout the
the development process—it is configured once and then left
alone. This logic consists mostly of interfaces to the eight
available memory controllers and a memory crossbar, as well
as logic that communicates with the dispatch and manage-
ment processors. Also included is the wrapper user logic
surrounding the Azido-generated netlist (see Figure 5), which
is responsible for instruction decode and abstraction of the
provided memory interface into a simple, streaming interface.
This “static” logic consumes roughly 25% of each of the HC-
1’s AEs (Xilinx part XC5VLX330) and, when using Convey’s
traditional compilation process, is re-implemented each build.
Given that this portion of the design changes Both of the
following partial implementation concepts accelerate compi-
lation by implementing this logic once, and then preserving
its placement and routing during consecutive builds of the
personality.

1) Partitions flow: The first approach taken makes use of
the Xilinx Hierarchical Design Partitions flow [15]. Two par-
titions were selected for this flow: (1) top partition containing
the entire FPGA design and (2) the Azido-generated logic.
The first is preserved while the second is constantly updated
by the Azido designer. The implementation of this flow is very
simple, consisting of some Makefile extensions and a couple
constraint files (*.ucf).

2) qFlow: This second utilizes a subset of the qFlow
framework, a tool for acceleration back-end compilation. The
tool assumes a hierarchical design methodology similar to that
which the Convey PDK encourages. That is, the use of inter-
face logic that is designed and configured once, experiencing
few evolutions throughout the entire design process, during
which the core, computational logic that is the focus of the
design undergoes many evolutions. Compared to the partitions-
based approach discussed above, qFlow provided generally
faster compilations (see Section IV-A), but was unable to fit
some of the larger designs that the partitions framework was
able to.

IV. RESULTS

The participants were successful in their attempt to im-
prove the performance and functionality of the reference S-
W implementation. Modifications included logic to maintain
the index of the highest scoring alignment, and a transition
from a single cell array to multiple arrays, with the goal of
achieving a linear speedup proportional to the number of arrays
by searching multiple partitions of the reference sequence in
parallel. The first modification was simple, and included the
use of Azido’s counter, maximum, multiplexer, and register
objects; however, the second involved significant change to the
high-level structure of the implementation—specifically, dupli-
cation of the systolic cell array and the addition of logic at the
front and back of the arrays to split the incoming stream and
collect results from each array, respectively. The improvements
resulted in a realized 4x bandwidth increase from 150 million
to 600 million bases per second, with a feasible speedup of

—— Standard

2001) -
—— Partitions
—— gFlow _ .

Build Time (min)

L L L L L L L L L L L L
1IxE 112 1x16 1x24 32 4x8 1x48 1x64 4x16 ax32 4x48 4x64

Fig. 10. Build times for Convey’s standard flow, the Partitions-based flow,
and gFlow for twelve different variations of the Smith-Waterman Azido
implementation.

32x to 4.8 billion bases per second, given enough parallel cell
arrays (note that, as the parallel array count increases, the
supported query sequence length decreases). These reported
throughput rates are for co-processor performance only, and
assume that the reference sequence(s) are available in co-
processor memory.

3) Usability challenges encountered by the group: One
difficulty experienced by the students during their use of
the Azido environment was gaining a basic knowledge of
synchronization—especially, synchronizing multiple flows of
data. Azido’s CoreLib, a core library of modules available to
the user, makes use of the Go-Done-Busy-Wait protocol to
simplify synchronization. Multiple, out-of-sync data flows can
be joined through the use of special “SyncQueuePair” objects.
However, most of these GDBW-based modules use registers or
queues for flow control, and the excessive use of such modules
may result in inefficient utilization of FPGA resources.

Another complication of the design process was timing
closure. Under the standard parameterization, the Convey PDK
enforces a clock rate of 150 MHz. Such a tight constraint
is easily broken by long chains of asynchronous operations.
However, Azido neither analyses the design nor enforces any
timing restrictions at compile time. Hence, whether or not a
design meets timing is determined only during the “behind-
the-scenes” implementation process, and the abstraction of the
implementation that Azido provides is lost if a constraint is
not met and the design proves dysfunctional.

A. Compilation performance

The performance of the alternative build flows is given in
Table I and visualized in Figure 10. Each Smith-Waterman
configuration is named with convention sw_MXxN, where M is
the number of parallel systolic arrays and N is the length of
each array. The median speedup over the standard, Convey-
provided flow for the partitions-based approach 1.51, while
that of qFlow was 2.76. The last two configurations tested,
4x48 and 4 x 64, could not be placed into the dynamic region—
the same dynamic region constraints were used for both flows.
Note the jump in build time from configuration 4 x 16 to 4 x 32
due to the increased utilization of the dynamic region.

TABLE 1.

BUILD TIMES (AVERAGE OF THREE RUNS) FOR CONVEY’S STANDARD FLOW, THE PARTITIONS FLOW, AND QFLOW. FOR THE PARTITION AND

QFLOW RESULTS, THE SPEEDUP IS GIVEN IN PARENTHESES. THE DEVICE UTILIZATION REPRESENTS THE UTILIZATION DUE ONLY TO THE DYNAMIC, USER
LOGIC, RATHER THAN THE ENTIRE DESIGN (THIS CAN BE ADDED TO THE UTILIZATION DUE TO THE STATIC LOGIC TO GET TOTAL DEVICE UTILIZATION).

Device Utilization (%)

Mean Build Time (min)

Design # Cells
Slice LUTs Slice FFs Standard Partitions qFlow

sw_1x8 8 1.83 2.16 89.10 65.60 (1.36) 26.58 (3.35)
sw_1x12 12 243 2.44 89.90 54.16 (1.66) 26.12 (3.44)
sw_Ix16 16 3.02 2.73 104.09 57.92 (1.80) 32.94 (3.16)
sw_1x24 24 4.22 3.30 98.80 76.85 (1.29) 34.75 (2.84)
sw_1x32 32 5.41 3.87 102.20 72.89 (1.40) 38.27 (2.67)
sw_4x8 32 5.62 4.10 96.90 61.58 (1.57) 39.20 (2.47)
sw_1x48 48 7.79 5.01 128.50 82.95 (1.55) 43.02 (2.99)
sw_1x64 64 10.18 6.15 129.73 87.92 (1.48) 53.75 (2.41)
sw_4x16 64 10.36 6.34 130.08 84.74 (1.54) 53.94 (2.41)
sw_4x32 128 19.85 10.81 165.99 173.62 (0.96) 97.33 (1.71)
sw_4x48 192 29.34 15.29 173.22

sw_4x64 256 38.83 19.76 208.89

V. CONCLUSIONS AND FUTURE WORK REFERENCES

This work presents bFlow, an FPGA-based big-data accel-
erator development environment significantly more usable by
non-engineers than traditional accelerator design tools. This is
accomplished by utilizing a graphical front-end environment
and a seamless, accelerated compilation back-end. Productivity
is improved by encouraging object reuse, providing high-level
design abstractions, and increasing design turns-per-day by
reducing compile time.

The framework was applied to the Convey Hybrid-Core
heterogeneous computing platforms, and its usability and pro-
ductivity tested by participants of the NSF-funded bioinformat-
ics Summer Institute at the Virginia Bioinformatics Institute.
Within a week, the participants successfully extended and ac-
celerated a reference Smith-Waterman FPGA implementation
designed in Azido, achieving a 4x throughput increase and
additional functionality. However, significant deficiencies in
Azido’s graphical syntax, specifically the poor synchronization
abstractions, were uncovered immediately and proved to be a
major barrier to the participants’ creation of complex logic.

In addition to the front-end developments, compilation
times for the Convey HC-1 server were reduced through the
use of the Xilinx Partitions flow [15] and the qFlow framework
[14] as alternatives to Convey’s standard approach. The median
compilation speedups for these flows were 1.51 and 2.76,
respectively.

Future research efforts include the consideration of memory
abstractions other than simple stream producers and con-
sumers. Also, while bFlow currently provides a small software
library to simplify the hardware-software barrier on the Convey
HC platform, there is great potential in describing both the
hardware and software together within Azido. Lastly, the
consideration of other design entry tools, such as LabVIEW
[12], is a must.

ACKNOWLEDGMENT

This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant Nos. EEC-
0642422 and IIP-1161022, and by NSF Award No. OCI-
1124123, High Performance Computing in the Life/Medical
Sciences.

(1]

(2]

(3]

(4]

[5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

E. D. Feigelson and G. J. Babu, “Big data in astronomy,”
Significance, vol. 9, no. 4, pp. 22-25, 2012. [Online]. Available:
http://dx.doi.org/10.1111/j.1740-9713.2012.00587.x

K. Cukier, “Data, data everywhere,” The Economist (London), vol. 394,
no. 8671, p. 3, 2010.

G. Brumfiel, “Down the petabyte highway,” Nature (London), vol. 469,
no. 20, p. 282, 2011.

L. J. Mclver, J. W. Fondon III, M. A. Skinner, and H. R. Garner,
“Evaluation of microsatellite variation in the 1000 genomes project
pilot studies is indicative of the quality and utility of the raw
data and alignments,” Genomics, vol. 97, no. 4, pp. 193-199, 4
2011. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0888754311000024

M. S. Rosenberg, Sequence alignment : methods, models, concepts, and
strategies. Berkeley: University of California Press, 2009.

Convey Computer, “The convey hc-1 computer architecture overview,”
http://conveycomputer.com/Resources/ConveyArchitecture WhiteP.pdf.

B. Nelson, M. Wirthlin, B. Hutchings, P. Athanas, and S. Bohner, “De-
sign productivity for configurable computing,” in ERSA '08: Proceed-
ings of the International Conference on Engineering of Reconfigurable
Systems and Algorithms, 2008, pp. 57-66.

K. Pereira, P. Athanas, H. Lin, and W. Feng, “Spectral method charac-
terization on fpga and gpu accelerators,” Reconfigurable Computing and
FPGAs (ReConFig), 2011 International Conference on, pp. 487-492,
Nov. 30 2011-Dec. 2 2011.

W. chun Feng and K. W. Cameron, “The green500 list: Encouraging
sustainable supercomputing,” Computer, vol. 40, no. 12, pp. 50-55,
Dec. 2007.

J. D. Bakos, “High-performance heterogeneous computing with the
convey hc-1,” Computing in Science & Engineering, vol. 12, no. 6,
pp. 80-87, Nov.-Dec. 2010.

Convey Computer, ‘“Personality development kit (pdk) for con-
vey hybrid-core computers,” http://conveycomputer.com/Resources/
PersonalityDevelopmentKit.pdf.

National Instruments, “Ni labview - improving the productivity of engi-
neers and scientists - national instruments,” http://www.ni.com/labview/,
2012.

MathWorks, Inc., “Simulink - simulation and model-based design,” http:
/Iwww.mathworks.com/products/simulink/, 2012.

T. Frangieh and P. Athanas, “A design assembly framework for fpga
back-end acceleration,” in International Conference on Reconfigurable
Computing and FPGAs (ReConFig 2012), to appear.

Xilinx, “Hierarchical design = methodology guide,”
/Iwww.xilinx.com/support/documentation/sw_manuals/xilinx13_1/
Hierarchical_Design_Methodology_Guide.pdf.

http:

E. Raymond, “The cathedral and the bazaar,” Knowledge in society,
vol. 12, no. 3, pp. 23-49, 1999.

Virginia Bioinformatics Institute, “Partnership supercomputing pro-
gram,” https://www.vbi.vt.edu/high_performance_computing/.

[18]

P. Zhang, “Implementation of the smith-waterman algorithm on a
reconfigurable supercomputing platform,” Proceedings of the Ist in-
ternational workshop on High-performance reconfigurable computing
technology and applications held in conjunction with SCO7 - HPRCTA
’07, p. 39, 2007.

[19]

T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences.” J Mol Biol, vol. 147, no. 1, pp. 195-197, Mar 1981.

