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Abstract—Long wait times constitute a bottleneck limiting the
number of compilation runs performed in a day, thus risking
to restrict FPGA adaptation in modern computing platforms.
This work presents an FPGA development paradigm as a means
to increase FPGA productivity. The practical tasks of logic
partitioning, placement and routing are examined and a resulting
assembly framework, qFlow, is implemented. Experiments show
up to 6x speed-ups using the proposed paradigm compared to
the vendor tool flows.

Keywords-FPGA; Modular-Assembly; Back-End Acceleration;
Productivity

I. INTRODUCTION

Initially used to implement glue logic, FPGAs today are
ubiquitous in automotive, data centers, high performance com-
puters, medical, networking, security and asic prototyping, to
name but a few [21], [4]. The speedup and modest power
consumption of FPGA-based systems however, are often as-
sociated with long wait times before a device configuration
is generated. Compared to contemporary alternatives such
as microprocessors and GPUs, FPGA development tools can
take hours if not days to generate a configuration, greatly
hampering FPGA productivity and risking to limit device
adaptation in modern computing platforms.

An FPGA design process consists of two complementary
phases: a front-end phase and a back-end phase. A designer
models and simulates their problems before hardware imple-
mentation, using tools built to describe hardware systems, i.e.,
the front-end tools. The design model is then synthesized into
a structural netlist as the last stage of the front-end process.
Today, there exist two classes of front-end tools: graphical
(such as LabVIEW and Azido [6]) and textual (such as VHDL
and Catapult C [12]). Thereafter the back-end tools consume
the resulting netlist and turn it into a device configuration.
Vendor specific, the back-end tools solve difficult problems
associated with transforming the netlist to a FPGA configu-
ration. The algorithms for solving these problems typically
do not scale well as the netlist size grows, making this a
time intensive process. MAP and Place and Route (PAR)
[20] are examples of Xilinx back-end tools, which typically
produce high-quality results. Due to their long run-times, back-
end tools are the major contributor to the FPGA productivity

TABLE I
FPGA COMPILATION TIMES FOR SAMPLE DESIGNS

Design Platform Impl. Time (s)
Edge Detection Xilinx ML 509 270
Gaussian Blur Xilinx ML 509 350
ZigBee Xilinx ML 509 441
1 Vector Addition Convey HC-1 4084
3 Vector Additions Convey HC-1 4530
Molecular Dynamics (GEM) Convey HC-1 50400

problem. Table I highlights back-end compilation times for
some FPGA designs.

Irrespective of the long run-times, vendor tools excel in the
fidelity of their results, while maximizing device utilization
and clock speed. In the process of optimizing designs, the
tools flatten carefully crafted hierarchical designs, and re-
implement verified and implemented logic for every design
iteration, incurring longer compilation times. For many FPGA
designers, vendor tools serve the purpose of generating highly
optimized designs that can fit on smaller, thus cheaper, devices.
Practically speaking, FPGA back-end compilation constitutes
a bottleneck limiting the number of iterations performed in
a day. The fact that back-end tools take hours or days to
generate a configuration, shifts the designer focus from the
computation itself, to irrelevant recurring long waiting times,
and jeopardizes their progress on solving problems.

This work presents a way of viewing FPGA development,
in which FPGAs are treated as flexible hardware capable of
quick adaptations to computational needs, not only as re-
configurable devices operating optimized high-speed designs.
In this paradigm, a design is split into two complimentary
sets based on logic variance: a mostly invariant logic set
and an evolving logic set. Compared to a holistic design
implementation by current FPGA development methodologies,
the work implements each of the two sets separately. As the
name indicates, the invariant set is less likely to change over
the design process, thus less frequently re-implemented. The
evolving set is oftentimes re-implemented during design itera-
tions. Through separation of concerns and re-use, the approach
speeds up the implementation process and put the designer’s
focus on the creative part (algorithms and computations) of
the design process.



The rest of the paper is organized as follows. Section II
summarizes related work. Section III describes the proposed
assembly paradigm. In Section IV, we implement a framework
based on the proposed paradigm. Results are discussed in
Section V. Finally, in Section VI we conclude and give
directions into future work.

II. RELATED WORK

Productivity issues related to FPGA back-end compilation
have received quite a bit of attention from both industry and
academia in recent years. This section summarizes some of the
most relevant activities. Xilinx currently offers three designs
flows, all of which belong to Xilinx Hierarchical Design (HD)
flows: Team Design flow, Design Preservation flow and Partial
Reconfiguration (PR) flow. Using Team Design flow [14], a
team of designers can concurrently work on a design. A design
is initially divided into modules that are floorplanned, then
each team member implements their portion of the design con-
currently and independently of other modules. An assembly
step stitches the different parts together into one implemented
design. Design Preservation flow preserves compilation results
and reuses them in future compilation runs, thus speeding up
the compilation process. The process is enabled through the
Xilinx Partitions flow, supporting three level of preservation:
synthesis, placement and routing logic preservation. Xilinx PR
flow [1] enables the partial modification of an operating PR
design by loading partial configuration(s), while other parts of
the design are still functioning. The modification is performed
on a dynamic region of the design, while other static parts of
the design remain intact. Altera has its own implementation
of the different HD flows, including Altera’s Team-Based
Design, Incremental Compilation with Design Partitions and
PR. For more information, the reader is referred to Quartus II
Handbook Volume 1: Design and Synthesis [2].

JBits [13] is an API into Xilinx FPGAs configuration bit-
streams. Written in Java, JBits provides the capability to design
and modify complete circuits for Xilinx FPGAs in a software
development environment, yielding quick edit/compile cycles.
JBits speeds up the configuration generation by completely
skipping the back-end tools. Wires-on-demand (WoD) [5]
implements an efficient run-time reconfiguration framework
for Xilinx FPGAs. The framework allocates a sandbox on
the device where precompiled modules fetched from a library
can be placed and routed at run-time, with a software layer
abstracting the low level reconfiguration details away from the
designer. WoD caches configuration for all modules skipping
the back-end tools during assembly. In [7] the authors presents
an FPGA CAD tool, Block Place and Route, that pre-computes
internal placement and routing of reused cores to speed-
up the implementation process. PATIS [9] is an automatic
floorplanner that leverages partial reconfiguration to improve
implementation and debug turnaround. The tool incremental
approach and localization of design updates to a corresponding
partial reconfiguration region itself lead to a faster design
convergence and configuration generation. HMFlow [15] is
another FPGA design flow based on hard macros that builds

on RapidSmith [16]. The flow implements a custom mapper,
placer, and router and leverages hard macros and caching
to speed up the FPGA compilation process. Some consider
PR flows have a productivity aspects to them. OpenPR is
an open-source, slotbased, partial-reconfiguration toolkit for
Xilinx FPGAs [18]. The toolkit is composed of several utilities
written in C++ tied together via scripts and Makefiles, and
packaged in a form that makes it ready to use for traditional
slot-based partial reconfiguration. Finally, the modular-based
assembly from [10] provides an environment for FPGA ap-
plication developers, that pre-compiles computational units in
an application then stitches the precomputed modules into a
physical netlist.

Two major weaknesses govern most of the flows list above:
architecture dependence and stiffness. An architecture depen-
dent implementation flow is oftentimes optimized for that
architecture yielding considerable amount of speedups for that
architecture at the expense of porting to different architectures.
A stiff implementation flow finds it hard to adapt to design
changes, such as logic relocation on the device.

III. THEORY: A PROPOSED ASSEMBLY PARADIGM

We propose a design assembly paradigm for FPGA devel-
opment that exploits design variance and logical hierarchy.
The proposed paradigm partitions a design into two classes,
an invariant set and an evolving set, incorporating different
implementation techniques and frequency for the two classes.
Following the proposed partitioning, the invariant set is less
likely to change, thus less frequently re-implemented, whereas
the evolving set is oftentimes updated and re-implemented.
The proposed flow addresses the two major weaknesses of
existing flow through device architecture independence and
flexible logic implementation. Contrary to current tool flows
that follow a holistic approach when implementing a design,
the proposed technique divides the implementation process
into four phases:

1) Design Partitioning
2) Invariant Set Implementation
3) Evolving Set Implementation
4) Design Assembly
Figure 1 presents a high-level view of the proposed assem-

bly paradigm. Details about each of the different phases of the
paradigm follow.

A. Design Partitioning

The first step in the implementation process is the design
partitioning phase. During this phase, a design is partitioned
into invariant and evolving logic. Logic can move back and
forth between these partitions over the course of development,
yet the general concept is to cluster all the logic that is
currently being refined into the evolving logic partition. Figure
2 shows an example partitioned design.

B. Invariant Set Implementation

The invariant set implementation process allocates a sand-
box, a region on a device that excludes logic and routing
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resource utilization, that will eventually host the evolving
logic. To yield a successful design assembly, the allocated
sandbox area needs to satisfy the minimum resource require-
ments for evolving logic. The vendor tools are then called to
map, place and route the invariant logic. The outcome of this
phase is a placed-and-routed design with dangling wires to
the evolving set. Figure 3 illustrates an implemented invariant
logic example with an allocated sandbox. The implemented
invariant set physical netlist is then cached and retrieved during
the design assembly phase, but never re-implemented until its
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Fig. 3. Invariant logic physical netlist

corresponding logic changes, sparing the designer consider-
able amount of time. It is assumed that re-implementing the
invariant set is much less frequent than re-implementing the
evolving set.

C. Evolving Set Implementation

During the evolving set implementation process, every
module of the evolving logic set, assumed to be hierarchical,
is separately floorplanned, mapped, placed and routed. The
implementation result is represented as a relatively placed
macro (RPM), a representation that provides structure to
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Fig. 4. Evolving module implementation (RPM)

the design elements without the need to specify absolute
placement location on the device [11]. Although the technique
is originally meant to help implementation tools meet timing
[11], the main purpose of using RPMs is their ability to easily
relocate modules on the device. All module RPMs are then
cached into a library for later retrieval, when needed during
the design assembly phase, saving re-implementation time of
their corresponding modules. With a hierarchical evolving set,
the effect of a change to a module is local to the module
itself and only the updated module is re-implemented. Figure
4 illustrates an example evolving module implementation in
RPM representation.

D. Design Assembly

The final phase of the implementation process is the design
assembly. During this phase, the implemented invariant set
produced from Section III-B is assembled with the imple-
mented evolving set produced from Section III-C, by placing
the corresponding evolving logic RPMs in the sandbox region
reserved during the invariant set implementation phase. A rout-
ing stage finalizes the assembly and produces the final design.
Details about placement and routing during the assembly phase
follow.

1) Placer: Bounded by the sandbox resources and its shape,
the evolving set RPMs required resources and their shapes, a
placer places the evolving logic set by computing an absolute
value for each module’s RPM. The placement process runs
until all modules are placed or until the placer fails to find
a feasible solution. Several factors can cause the placer to
fail such as insufficient sandbox resources or improper RPM
floorplan. Different placement algorithms can also affect the
feasibility, the quality as well as the convergence speed of the
solution [17]. Figure 5 shows the first stage of the assembly
with two evolving RPMs placed in the allocated sandbox.
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Fig. 5. Two evolving logic modules placed in the invariant logic implemen-
tation allocated sandbox
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Fig. 6. A fully placed and routed design

2) Router: After a successfully placed design, a router
traverses the evolving set connectivity list and routes all inter-
module nets. The invariant set connectivity is already handled
in Section III-B. The routing process runs until all nets are
routed or until the router fails to find a feasible solution.
The router fails mainly due to insufficient routing resources in
congested areas on the device. Different routing algorithms can
also affect the feasibility, the quality as well as the convergence
speed of the solution [17]. The routing phase ends by running
a timing analysis step against all design timing constraints to
verify that the assembled design meets timing. The resulting
design is passed to the vendor tools to generate a configuration
for the target device. Figure 6 shows the resulting assembled
design.

IV. IMPLEMENTATION: QUICK FLOW (QFLOW)

In this section we present qFlow, a back-end productivity
framework that implements the concepts presented in Section
III. Implemented in C++, qFlow is an FPGA back-end produc-
tivity framework that builds on tools for open reconfigurable
computing (TORC) [19], an open-source infrastructure and
tool set for reconfigurable computing. QFlow extends TORC
with physical netlist modularization techniques, RPM grid



generators, a coarse-grain placer and a metadata capturing
framework. The entry point to qFlow is an EDIF netlist
making front-end tools agnostic; thus, capable of consuming
input from graphical and textual tools. Details on the different
component of the qFlow framework are described in the next
sections.

A. Design Partitioning

The design partitioning process can be done automatically,
manually by the designer, or through a designer-guided pro-
cess. QFlow leaves the process of partitioning the design to
the designer. During design partitioning, the designer decides
on the boundary separating the invariant and the evolving set,
then creates a logical wrapper around the evolving set.

B. Design Jacket Generation

In qFlow nomenclature, the implemented invariant set is
referred to as the design jacket. Generating the design jacket
requires a two-step preparation phase. In Step 1, qFlow parses
the logical wrapper (see Section IV-A) interface and generates
anchor points for all connections going in and out of the
wrapper, in the form of bus macros. Such anchor points come
useful when connecting the design jacket to the RPMs in
the assembly phase. The wrapper along with the contained
evolving logic is then replaced by a corresponding blackbox
for implementation purposes. Comes Step 2, qFlow allocates
a sandbox using Xilinx CONFIG PROHIBIT constraints. The
resulting design along with the corresponding constraints are
pushed through the Xilinx tools and a fully placed and
routed netlist (NCD format) is generated. The resulting netlist
excludes any resources in the allocated sandbox region. It is
worth mentioning that vendor tools optimization techniques
can be applied during design jacket implementation and all
timing information is reported back to the user.

C. Evolving Set Implementation

Assumed hierarchical, the evolving set consists of one or
more interconnected modules. For implementation purposes,
qFlow floorplans, maps and places each module as its own
standalone design, allowing qFlow to handle all evolving
modules in parallel. The resulting physical netlist is then
modularized, i.e., turned into a RPM (NMC format) easily
relocatable on the device, and cached for retrieval during the
assembly stage. As in Section IV-B, vendor tools optimization
techniques can be also applied to each module implementation.

D. Design Assembly

During assembly, the design jacket and the evolving mod-
ules are stitched together into the final design. For that pur-
pose, qFlow implements a simulated-annealing coarse-grain
placer to handle the placement of evolving modules. The
placer reads in the RPM representation of all modules and
computes a valid placement for each using a qFlow generated
device RPM grid, a two-dimensional representation of all
placeable sites on the device. RPM modules are placed by
LOCing their reference instance, the instance with respect to

which all other instances in an RPM are placed. During place-
ment, unmodified macros are retrieved from cache, whereas
updated ones are re-implemented before placement proceeds.
All inter-modules and modules to design jacket nets are also
created. A successful placement initiates the router stage of
the design. Due to its superior quality of results and timing
awareness, qFlow leverages Xilinx PAR to perform all its
routing, making qFlow a timing-aware framework with timing
reporting capabilities. The re-entrant mode of PAR is used to
handle the job.

V. RESULTS

Two sets of benchmarks are used to evaluate the flow. The
first sixteen designs come from the IWLS 2005 benchmark
suite [3], whereas the second set consists of six larger de-
signs, for a total of twenty-two benchmarks. Each design is
implemented using Xilinx ISE 13.4 and qFlow for hundred
runs. The average of all runs per design is reported in Table
II and Table III.

It turned out that all sixteen IWLS 2005 benchmarks are
small in size compared to a realistic FPGA design. Therefore
we ended up treating them as evolving logic, forcing the
framework to place and route them each time the design is as-
sembled. The alternative was to treat them as an invariant logic
and make their implementation part of the design jacket with
a virtual zero time to implement from iteration to next. Table
II presents the compilation times for three flows: Xilinx ISE
13.4, qFLow, and qFlow with an ideal native circuit description
(NCD) interface. An ideal NCD interface is an interface that
takes insignificant time to merge two implemented designs,
assuming the two designs have no resource conflicts. The table
shows an average speedup of 1.2x using qFlow over Xilinx ISE
13.4.

Three factors come together to cause the moderate speedup
reported in this first set of experiments. The first is a slow
physical netlist interface. During the assembly stage, qFlow
uses Xilinx FPGA Edline, the command line version of FPGA
Editor, to merge the different physical netlists. However,
FPGA Editor itself is a slow and outdated tool and a replace-
ment is being developed by Xilinx [8]. Secondly, the speedup
achieved using the proposed framework is canceled out by the
associated large framework overhead given such small designs.
For such design sizes, vendor tools excel making the need for
acceleration in the first place redundant. Thirdly, by design, all
experiments assumed no design jacket re-use, which in turn
reduce the speedup using the framework. The last two columns
of Table II report a speedup of 1.9x given an ideal physical
netlist interface.

The real speedups that qFlow offer is for larger designs
that incorporates both invariant and evolving logic. Table III
illustrates Xilinx ISE 13.4 and qFlow implementation times for
such designs. Each of these designs consists of a design jacket
and one or more evolving modules. An average speedup of 4x
is attained compared to Xilinx ISE 13.4 for the six designs,
and an average 6x speedup for the large Convey HC-1 designs.



TABLE II
FPGA COMPILATION TIMES FOR SIXTEEN IWLS 2005 DESIGNS

Design Impl. Time (s) Speedup Impl. Time (s) Speedup
ISE QFlow QFlow

(Ideal NCD IF) (Ideal NCD IF)

ac97 146 113 1.3 73 2.0
aes 120 100 1.2 54 2.2
des 123 120 1.0 72 1.7
ethernet 137 178 0.8 127 1.1
fpu 323 284 1.1 231 1.4
i2c 85 80 1.1 47 1.8
mem ctrl 206 173 1.2 126 1.6
pci 158 109 1.5 60 2.6
sasc 73 78 0.9 46 1.6
simple spi 75 78 1.0 46 1.6
spi 115 92 1.3 56 2.1
tv80 168 100 1.7 64 2.6
usb funct 123 130 1.0 83 1.5
usb phy 80 78 1.0 46 1.7
vga lcd 133 97 1.4 55 2.4
wb dma 153 107 1.4 57 2.7

TABLE III
FPGA COMPILATION TIMES FOR SIX SAMPLE DESIGNS

Design Platform Impl. Time (s) Speedup
ISE QFlow

Guassian Blur Xilinx ML 509 350 202 1.73
Edge Detection Xilinx ML 509 270 165 1.64
ZigBee Xilinx ML 509 441 155 2.85
1 Vector Addition Convey HC-1 4084 583 7.01
2 Vector Additions Convey HC-1 4306 717 6.01
3 Vector Additions Convey HC-1 4520 909 4.97

VI. CONCLUSION AND FUTURE WORK

Despite their high-performance and modest power consump-
tion, FPGAs are often associated with long place and route
times due to their programming model. In this work, we
propose an assembly paradigm that leverages the concept of
design re-use to speedup the configuration generation process.
A framework called qFlow is implemented and despite the
limitations of the current vendor tools, an average speedup of
up to 6x is achieved for large design. There are a few ways
of interpreting this. One is that a designer has the ability to
iterate over their design up to six times more over a given
period of time. Another is that with a greatly reduced back-
end compilation time, a designer is free to explore more design
alternatives.

Advancing qFlow to take actions assembly when timing
requirements are not met is a potential area to explore. The
framework already reports timing information throughout the
different implementation and assembly phases. Other areas
to investigate consist of quantifying the reduction in design
utilization and clock speed when using hierarchical design as-
sembly techniques in general, and the implemented framework
in particular. Studying the performance of the tool in more
regular designs such as systolic arrays, and design partitioning
techniques that maximize re-use, thus decrease compilation
times, is yet another venue to check.
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